Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Cent Sci ; 6(6): 939-949, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32607441

ABSTRACT

Drug discovery is a rigorous process that requires billion dollars of investments and decades of research to bring a molecule "from bench to a bedside". While virtual docking can significantly accelerate the process of drug discovery, it ultimately lags the current rate of expansion of chemical databases that already exceed billions of molecular records. This recent surge of small molecules availability presents great drug discovery opportunities, but also demands much faster screening protocols. In order to address this challenge, we herein introduce Deep Docking (DD), a novel deep learning platform that is suitable for docking billions of molecular structures in a rapid, yet accurate fashion. The DD approach utilizes quantitative structure-activity relationship (QSAR) deep models trained on docking scores of subsets of a chemical library to approximate the docking outcome for yet unprocessed entries and, therefore, to remove unfavorable molecules in an iterative manner. The use of DD methodology in conjunction with the FRED docking program allowed rapid and accurate calculation of docking scores for 1.36 billion molecules from the ZINC15 library against 12 prominent target proteins and demonstrated up to 100-fold data reduction and 6000-fold enrichment of high scoring molecules (without notable loss of favorably docked entities). The DD protocol can readily be used in conjunction with any docking program and was made publicly available.

2.
Molecules ; 24(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554191

ABSTRACT

Cutaneous T-cell lymphomas (CTCL) are the most common primary lymphomas of the skin. We have previously identified thymocyte selection-associated high mobility group (HMG) box protein (TOX) as a promising drug target in CTCL; however, there are currently no small molecules able to directly inhibit TOX. We aimed to address this unmet opportunity by developing anti-TOX therapeutics with the use of computer-aided drug discovery methods. The available NMR-resolved structure of the TOX protein was used to model its DNA-binding HMG-box domain. To investigate the druggability of the corresponding protein-DNA interface on TOX, we performed a pilot virtual screening of 200,000 small molecules using in silico docking and identified 'hot spots' for drug-binding on the HMG-box domain. We then performed a large-scale virtual screening of 7.6 million drug-like compounds that were available from the ZINC15 database. As a result, a total of 140 top candidate compounds were selected for subsequent in vitro validation. Of those, 18 small molecules have been characterized as selective TOX inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Drug Discovery/methods , High Mobility Group Proteins/antagonists & inhibitors , High Mobility Group Proteins/chemistry , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lymphoma, T-Cell, Cutaneous/drug therapy , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Quantitative Structure-Activity Relationship , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL