Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166524, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35985445

ABSTRACT

Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.


Subject(s)
Alzheimer Disease , Prostatic Neoplasms , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Androgen Antagonists/therapeutic use , Androgens/metabolism , Bacterial Proteins , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
2.
BMC Genomics ; 17: 367, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27189621

ABSTRACT

BACKGROUND: Aschersonia badia [(Ab) Teleomorph: Hypocrella siamensis] is an entomopathogenic fungus that specifically infects scale insects and whiteflies. We present the whole genome sequence of Ab and its comparison with two clavicipitaceous fungi Metarhizium robertsii (MR: generalist entomopathogen) and M. acridum (MAC: acridid-specific entomopathogen) that exhibit variable host preferences. Here, through comparative analysis of pathogen-host interacting genes, carbohydrate active enzymes, secondary metabolite biosynthesis genes, and sexuality genes, we explore the proteins with possible virulence functions in clavicipitaceous fungi. Comprehensive overview of GH18 family chitinases has been provided to decipher the role of chitinases in claviceptaceous fungi that are either host specific or generalists. RESULTS: We report the 28.8 Mb draft genome of Ab and its comparative genome analysis with MR and MAC. The comparative analyses suggests expansion in pathogen-host interacting gene families and carbohydrate active enzyme families in MR, whilst their contraction in Ab and MAC genomes. The multi-modular NRPS gene (dtxS1) responsible for biosynthesis of the secondary metabolite destruxin in MR is not conserved in Ab, similar to the specialist pathogen MAC. An additional siderophore biosynthetic gene responsible for acquisition of iron was identified in MR. Further, the domain survey of chitinases suggest that the CBM50 (LysM) domains, which participate in chitin-binding functions, were not observed in MAC, but were present in Ab and MR. However, apparent differences in frequency of CBM50 domains associated with chitinases of Ab and MR was identified, where MR chitinases displayed a higher proportion of associated CBM50 domains than Ab chitinases. CONCLUSIONS: This study suggests differences in distribution of dtxS1 and chitinases in specialists (Ab and MAC) and generalists (MR) fungi. Our analysis also suggests the presence of a siderophore biosynthetic gene in the MR genome which perhaps aids in enhanced virulence potential and host range. The variation in association of CBMs, being higher in generalists (MR) and lower in specialists (Ab and MAC) fungi may further be responsible for the differences in host affiliation.


Subject(s)
Ascomycota/genetics , Genome, Fungal , Genomics , Insecta/microbiology , Animals , Ascomycota/classification , Chitinases , Computational Biology/methods , DNA Transposable Elements , Genomics/methods , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Molecular Sequence Annotation , Mutation , Phylogeny
3.
Genome Biol Evol ; 7(3): 916-30, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25716828

ABSTRACT

Hirsutella thompsonii (Ht) is a fungal pathogen of acarines and the primary cause of epizootics among mites. The draft genomes of two isolates of Ht (MTCC 3556: Ht3, 34.6 Mb and MTCC 6686: Ht6, 34.7 Mb) are presented and compared with the genomes of Beauveria bassiana (Bb) ARSEF 2860 and Ophiocordyceps sinensis (Os) CO18. Comparative analysis of carbohydrate active enzymes, pathogen-host interaction genes, metabolism-associated genes, and genes involved in biosynthesis of secondary metabolites in the four genomes was carried out. Reduction in gene family sizes in Ht3 and Os as compared with Ht6 and Bb is observed. Analysis of the mating type genes in Ht reveals the presence of MAT idiomorphs which is suggestive of cryptic sexual traits in Ht. We further identify and classify putative chitinases that may function as virulence factors in fungal entomopathogens due to their role in degradation of arthropod cuticle.


Subject(s)
Chitinases/genetics , Evolution, Molecular , Genome, Fungal , Hypocreales/genetics , Beauveria/genetics , Carbohydrate Metabolism/genetics , Chitinases/chemistry , Chitinases/classification , DNA Transposable Elements , Genomics , Host-Pathogen Interactions/genetics , Hypocreales/enzymology , Multigene Family , Phylogeny , Protein Structure, Tertiary , Secondary Metabolism/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...