Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 17(4): 532-52, 2016 May.
Article in English | MEDLINE | ID: mdl-26292651

ABSTRACT

The root lesion nematode Pratylenchus zeae, a migratory endoparasite, is an economically important pest of major crop plants (e.g. cereals, sugarcane). It enters host roots, migrates through root tissues and feeds from cortical cells, and defends itself against biotic and abiotic stresses in the soil and in host tissues. We report de novo sequencing of the P. zeae transcriptome using 454 FLX, and the identification of putative transcripts encoding proteins required for movement, response to stimuli, feeding and parasitism. Sequencing generated 347,443 good quality reads which were assembled into 10,163 contigs and 139,104 singletons: 65% of contigs and 28% of singletons matched sequences of free-living and parasitic nematodes. Three-quarters of the annotated transcripts were common to reference nematodes, mainly representing genes encoding proteins for structural integrity and fundamental biochemical processes. Over 15,000 transcripts were similar to Caenorhabditis elegans genes encoding proteins with roles in mechanical and neural control of movement, responses to chemicals, mechanical and thermal stresses. Notably, 766 transcripts matched parasitism genes employed by both migratory and sedentary endoparasites in host interactions, three of which hybridized to the gland cell region, suggesting that they might be secreted. Conversely, transcripts for effectors reported to be involved in feeding site formation by sedentary endoparasites were conspicuously absent. Transcripts similar to those encoding some secretory-excretory products at the host interface of Brugia malayi, the secretome of Meloidogyne incognita and products of gland cells of Heterodera glycines were also identified. This P. zeae transcriptome provides new information for genome annotation and functional analysis of possible targets for control of pratylenchid nematodes.


Subject(s)
Gene Expression Profiling , Helminth Proteins/genetics , Locomotion/genetics , Parasites/genetics , Sensation/genetics , Transcriptome/genetics , Tylenchoidea/genetics , Animals , Base Sequence , Caenorhabditis elegans/genetics , Carbohydrates/chemistry , Computer Simulation , Expressed Sequence Tags , Feeding Behavior , Genes, Helminth , Helminth Proteins/metabolism , Molecular Sequence Annotation , Pharynx/physiology , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...