Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 1243, 2020.
Article in English | MEDLINE | ID: mdl-32973825

ABSTRACT

The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite being MM. A cosegregation analysis between a SNV in CitACS4 and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent on CitACS4, but conferred by an unlinked recessive gene which we called pa. Two different approaches were performed to map the pa gene in the genome of C. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates that pa maps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down the pa locus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.

2.
Plant J ; 103(4): 1548-1560, 2020 08.
Article in English | MEDLINE | ID: mdl-32436252

ABSTRACT

Ethylene is the key regulator of sex determination in monoecious species of the family Cucurbitaceae. This hormone determines which individual floral meristems develop as female or male flowers and the female flowering transition. The sex determination genes discovered so far code for ethylene biosynthesis enzymes, but little is known about the importance of ethylene signaling components. In this paper we characterize two novel ethylene-insensitive mutations (etr1a-1 and etr1b) which block the female flowering transition of Cucurbita pepo; this makes plants produce male flowers indefinitely (androecy). Two missense mutations in the ethylene-binding domain of the ethylene receptors CpETR1A or CpETR1B were identified as the causal mutations of these phenotypes by using whole-genome resequencing. The distinctive phenotypes of single and double mutants for four etr mutations have demonstrated that the final level of ethylene insensitivity depends upon the strength and dosage of mutant alleles for at least three cooperating ETR genes, and that the level of ethylene insensitivity determines the final sex phenotype of the plant. The sex phenotype ranges from monoecy in ethylene-sensitive wild-type plants to androecy in the strongest ethylene-insensitive ones, via andromonoecy in partially ethylene-insensitive plants. The induction of female flowering transition was found to be associated with upregulation of CpACS11, CpACO2 and CpACS27, three ethylene biosynthesis genes required for female flower development. A model is proposed herein, integrating both ethylene biosynthesis and receptor genes into the genetic network which regulates sex determination in C. pepo.


Subject(s)
Cucurbita/growth & development , Flowers/growth & development , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Cucurbita/genetics , Ethylenes/metabolism , Flowers/genetics , Fruit/growth & development , Genes, Plant/genetics , Genes, Plant/physiology , Mutation/genetics , Plant Growth Regulators/metabolism , Plant Proteins/physiology , Receptors, Cell Surface/physiology
3.
J Exp Bot ; 71(1): 154-167, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31562498

ABSTRACT

High-throughput screening of an ethyl methanesulfonate-generated mutant collection of Cucurbita pepo using the ethylene triple-response test resulted in the identification of two semi-dominant ethylene-insensitive mutants: etr1a and etr2b. Both mutations altered sex determination mechanisms, promoting conversion of female into bisexual or hermaphrodite flowers, and monoecy into andromonoecy, thereby delaying the transition to female flowering and reducing the number of pistillate flowers per plant. The mutations also altered the growth rate and maturity of petals and carpels in pistillate flowers, lengthening the time required for flowers to reach anthesis, as well as stimulating the growth rate of ovaries and the parthenocarpic development of fruits. Whole-genome sequencing allowed identification of the causal mutation of the phenotypes as two missense mutations in the coding region of CpETR1A and CpETR2B, each one corresponding to one of the duplicates of ethylene receptor genes highly homologous to Arabidopsis ETR1 and ETR2. The phenotypes of homozygous and heterozygous single- and double-mutant plants indicated that the two ethylene receptors cooperate in the control of the ethylene response. The level of ethylene insensitivity, which was determined by the strength of each mutant allele and the dose of wild-type and mutant etr1a and etr2b alleles, correlated with the degree of phenotypic changes in the mutants.


Subject(s)
Cucurbita/genetics , Flowers/growth & development , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Cucurbita/growth & development , Flowers/genetics , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism
4.
Plant Reprod ; 31(4): 411-426, 2018 12.
Article in English | MEDLINE | ID: mdl-30128916

ABSTRACT

In the species of the Cucurbitaceae family, the occurrence of separate male and female flowers in the same plant (monoecy) is controlled by an ethylene biosynthesis ACS gene, which specifically suppresses the development of stamen in the female flower. In watermelon, a mutation of loss of function in CitACS4 promotes the conversion of female into hermaphrodite flowers, and of monoecious into andromonoecious plants. We have studied whether the ethylene produced by CitACS4 enzyme could also be involved in other ethylene-regulated traits, including pistillate flowering transition and the number of female flowers per plant, the development of floral organs other than stamens, as well as fruit and seed set, and fruit development. A linkage analysis approach was performed in three independent F2 populations segregating for the two alleles of the gene (M, monoecious; m, andromonoecious), and the different traits under study. The CitACS4m allele not only cosegregated with andromonoecy, but also with earlier pistillate transition, an increased number of pistillate flowers per plant, and a slower growth and maturation of petals and carpels, which delayed anthesis time in hermaphrodite flowers. The m allele was also found to be linked to a reduced fruit set, which was not caused by a deficiency in pollination or fertilization. The gene also affected the longitudinal and transverse growth rates of the ovary and fruit, which means that fruits from andromonoecious plants (mm) were rounder than those from monoecious (MM) ones. Taken together, these data indicate that the locus defined by the ethylene biosynthesis and sex-determining gene CitACS4 acts as a pleiotropic regulator of the complete development of the pistillate flower and the earlier development of the fruit.


Subject(s)
Citrullus/growth & development , Flowers/enzymology , Fruit/growth & development , Gene Expression Regulation, Plant , Lyases/metabolism , Plant Proteins/metabolism , Alleles , Citrullus/enzymology , Citrullus/genetics , Citrullus/metabolism , Ethylenes/biosynthesis , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/enzymology , Fruit/genetics , Fruit/metabolism , Germ Cells, Plant/enzymology , Germ Cells, Plant/growth & development , Lyases/genetics , Phenotype , Plant Proteins/genetics , Reproduction
5.
Plant J ; 89(1): 58-72, 2017 01.
Article in English | MEDLINE | ID: mdl-27599169

ABSTRACT

Sex determination in Rumex acetosa, a dioecious plant with a complex XY1 Y2 sex chromosome system (females are XX and males are XY1 Y2 ), is not controlled by an active Y chromosome but depends on the ratio between the number of X chromosomes and autosomes. To gain insight into the molecular mechanisms of sex determination, we generated a subtracted cDNA library enriched in genes specifically or predominantly expressed in female floral buds in early stages of development, when sex determination mechanisms come into play. In the present paper, we report the molecular and functional characterization of FEM32, a gene encoding a protein that shares a common architecture with proteins in different plants, animals, bacteria and fungi of the aerolysin superfamily; many of these function as ß pore-forming toxins. The expression analysis, assessed by northern blot, RT-PCR and in situ hybridization, demonstrates that this gene is specifically expressed in flowers in both early and late stages of development, although its transcripts accumulate much more in female flowers than in male flowers. The ectopic expression of FEM32 under both the constitutive promoter 35S and the flower-specific promoter AP3 in transgenic tobacco showed no obvious alteration in vegetative development but was able to alter floral organ growth and pollen fertility. The 35S::FEM32 and AP3::FEM32 transgenic lines showed a reduction in stamen development and pollen viability, as well as a diminution in fruit set, fruit development and seed production. Compared with other floral organs, pistil development was, however, enhanced in plants overexpressing FEM32. According to these effects, it is likely that FEM32 functions in Rumex by arresting stamen and pollen development during female flower development. The aerolysin-like pore-forming proteins of eukaryotes are mainly involved in defence mechanisms against bacteria, fungi and insects and are also involved in apoptosis and programmed cell death (PCD), a mechanism that could explain the role of FEM32 in Rumex sex determination.


Subject(s)
Bacterial Toxins/genetics , Flowers/genetics , Nicotiana/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Pore Forming Cytotoxic Proteins/genetics , Rumex/genetics , Amino Acid Sequence , Bacterial Toxins/classification , Flowers/growth & development , Fruit/genetics , Fruit/growth & development , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/classification , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pore Forming Cytotoxic Proteins/classification , Rumex/growth & development , Seeds/genetics , Seeds/growth & development , Sequence Homology, Amino Acid , Nicotiana/growth & development
6.
PLoS One ; 11(5): e0154362, 2016.
Article in English | MEDLINE | ID: mdl-27149159

ABSTRACT

Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.


Subject(s)
Citrullus/genetics , Flowers/genetics , Lyases/physiology , Sex Determination Processes/genetics , Alleles , Citrullus/anatomy & histology , Citrullus/physiology , Cloning, Molecular , Ethylenes/biosynthesis , Flowers/anatomy & histology , Flowers/growth & development , Flowers/physiology , Genes, Plant/physiology , Genotyping Techniques , Phenotype , Polymerase Chain Reaction , Sex Determination Processes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...