Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 12(6): e051728, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654467

ABSTRACT

INTRODUCTION: Intraoperative arterial hypotension is associated with poor postoperative outcomes. The Hypotension Prediction Index (HPI) developed using machine learning techniques, allows the prediction of arterial hypotension analysing the arterial pressure waveform. The use of this index may reduce the duration and severity of intraoperative hypotension in adults undergoing non-cardiac surgery. This study aims to determine whether a treatment protocol based on the prevention of arterial hypotension using the HPI algorithm reduces the duration and severity of intraoperative hypotension compared with the recommended goal-directed fluid therapy strategy and may improve tissue oxygenation and organ perfusion. METHODS AND ANALYSIS: We will conduct a multicentre, randomised, controlled trial (N=80) in high-risk surgical patients scheduled for elective major abdominal surgery. All participants will be randomly assigned to a control or intervention group. Haemodynamic management in the control group will be based on standard haemodynamic parameters. Haemodynamic management of patients in the intervention group will be based on functional haemodynamic parameters provided by the HemoSphere platform (Edwards Lifesciences), including dynamic arterial elastance, dP/dtmax and the HPI. Tissue oxygen saturation will be recorded non-invasively and continuously by using near-infrared spectroscopy technology. Biomarkers of acute kidney stress (cTIMP2 and IGFBP7) will be obtained before and after surgery. The primary outcome will be the intraoperative time-weighted average of a mean arterial pressure <65 mm Hg. ETHICS AND DISSEMINATION: Ethics committee approval was obtained from the Ethics Committee of Hospital Gregorio Marañón (Meeting of 27 July 2020, minutes 18/2020, Madrid, Spain). Findings will be widely disseminated through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT04301102.


Subject(s)
Hypotension , Arterial Pressure , Elective Surgical Procedures , Hemodynamics , Humans , Hypotension/diagnosis , Hypotension/etiology , Hypotension/prevention & control , Multicenter Studies as Topic , Perfusion , Randomized Controlled Trials as Topic
3.
Phys Rev Lett ; 126(2): 023605, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33512213

ABSTRACT

In spite of its fundamental importance in quantum science and technology, the experimental certification of nonclassicality is still a challenging task, especially in realistic scenarios where losses and noise imbue the system. Here, we present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification, which conceptually unite phase-space representations with correlation conditions. We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light. To this end, we experimentally generate single-photon-added thermal states with various thermal mean photon numbers and detect them at different loss levels. Based on the reconstructed Wigner and Husimi Q functions, the inequality conditions detect nonclassicality despite the fact that the involved distributions are nonnegative, which includes cases of high losses (93%) and cases where other established methods do not reveal nonclassicality. We show the advantages of the implemented approach and discuss possible extensions that assure a wide applicability for quantum science and technologies.

4.
Phys Rev Lett ; 124(13): 133601, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32302197

ABSTRACT

We derive a family of inequalities involving different phase-space distributions of a quantum state which have to be fulfilled by any classical state. The violation of these inequalities is a clear signature of nonclassicality. Our approach combines the characterization of nonclassical effects via negativities in phase-space distributions with inequality conditions usually being formulated for moments of physical observables. Importantly, the obtained criteria certify nonclassicality even when the involved phase-space distributions are non-negative. Moreover, we show how these inequalities are related to correlation measurements. The strength of the derived conditions is demonstrated by different examples, including squeezed states, lossy single-photon states, and even coherent states.

SELECTION OF CITATIONS
SEARCH DETAIL
...