Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 24(11): 2339-2349, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34337842

ABSTRACT

Consumer metabolism controls the energy uptake from the environment and its allocation to biomass production. In natural ecosystems, available energy in food often fails to predict biomass production which is also (co)limited by the relative availability of various dietary compounds. To date, the link between energy metabolism and the effects of food chemical composition on biomass production remains elusive. Here, we measured the resting metabolic rate (RMR) of Daphnia magna along ontogeny when undergoing various (non-energetic) nutritional constraints. All types of dietary (co)limitations (Fatty acids, Sterols, Phosphorus) induced an increase in mass-specific RMR up to 128% between highest and lowest quality diets. We highlight a strong negative correlation between RMR and growth rate indicating RMR as a promising predictor of consumer growth rate. We argue that quantifying the energetic cost imposed by food quality on individual RMR may constitute a common currency enabling the integration of nutritional and metabolic ecology.


Subject(s)
Basal Metabolism , Ecosystem , Animals , Daphnia , Energy Metabolism , Food Quality
2.
Ecol Lett ; 23(5): 860-869, 2020 May.
Article in English | MEDLINE | ID: mdl-32212238

ABSTRACT

Temperature and nutrient availability, which are major drivers of consumer performance, are dramatically affected by global change. To date, there is no consensus on whether warming increases or decreases consumer needs for dietary carbon (C) relatively to phosphorus (P), thus hindering predictions of secondary production responses to global change. Here, we investigate how the dietary C:P ratio optimising consumer growth (TERC:P : Threshold Elemental Ratio) changes along temperature gradients by combining a temperature-dependent TERC:P model with growth experiments on Daphnia magna. Both lines of evidence show that the TERC:P response to temperature is U-shaped. This shape indicates that consumer nutrient requirements can both increase or decrease with increasing temperature, thus reconciling previous contradictive observations into a common framework. This unified framework improves our capacity to forecast the combined effects of nutrient cycle and climatic alterations on invertebrate production.


Subject(s)
Daphnia , Phosphorus , Animals , Carbon , Invertebrates , Nitrogen , Temperature
3.
Front Microbiol ; 10: 1319, 2019.
Article in English | MEDLINE | ID: mdl-31258520

ABSTRACT

Edaphic cyanobacteria and algae have been extensively studied in dryland soils because they play key roles in the formation of biological soil crusts and the stabilization of soil surfaces. Yet, in temperate agricultural crop soils, little is understood about the functional significance of indigenous photosynthetic microbial communities for various soil processes. This study investigated how indigenous soil algae and cyanobacteria affected topsoil aggregate stability in cereal cropping systems. Topsoil aggregates from conventional and organic cropping systems were incubated in microcosms under dark or photoperiodic conditions with or without a treatment with an herbicide (isoproturon). Physicochemical parameters (bound exopolysaccharides, organic carbon) and microbial parameters (esterase activity, chlorophyll a biomass, and pigment profiles) were measured for incubated aggregates. Aggregate stability were analyzed on the basis of aggregate size distribution and the mean weight diameter (MWD) index, resulting from disaggregation tests. Soil photosynthetic microbial biomass (chl a) was strongly and positively correlated with aggregate stability indicators. The development of microalgae crusts in photoperiodic conditions induced a strong increase of the largest aggregates (>2 mm), as compared to dark conditions (up to 10.6 fold and 27.1 fold, in soil from organic and conventional cropping systems, respectively). Concomitantly, the MWD significantly increased by 2.4 fold and 4.2 fold, for soil from organic and conventional cropping systems. Soil microalgae may have operated directly via biochemical mechanisms, by producing exopolymeric matrices surrounding soil aggregates (bound exopolysaccharides: 0.39-0.45 µg C g-1 soil), and via biophysical mechanisms, where filamentous living microbiota enmeshed soil aggregates. In addition, they may have acted indirectly by stimulating heterotrophic microbial communities, as revealed by the positive effect of microalgal growth on total microbial activity. The herbicide treatment negatively impacted soil microalgal community, resulting in significant decreases of the MWD of the conventional soil aggregates (up to -42% of the value in light treatment). This study underscores that indigenous edaphic algae and cyanobacteria can promote aggregate formation, by forming photosynthetic microbiotic crusts, thus improving the structural stability of topsoil, in temperate croplands. However, the herbicide uses can impair the functional abilities of algal and cyanobacterial communities in agricultural soils. ORIGINALITY/SIGNIFICANCE: Edaphic algal and cyanobacterial communities are known to form photosynthetic microbial crusts in arid soils, where they drive key ecosystem functions. Although less well characterized, such communities are also transiently abundant in temperate and mesic cropped soils. This microcosm study investigated the communities' functional significance in topsoil aggregate formation and stabilization in two temperate cropping systems. Overall, our results showed that the development of indigenous microalgal communities under our experimental conditions drove higher structural stability in topsoil aggregates in temperate cropland soils. Also, herbicide use affected photosynthetic microbial communities and consequently impaired soil aggregation.

4.
Ecol Lett ; 21(11): 1714-1722, 2018 11.
Article in English | MEDLINE | ID: mdl-30151853

ABSTRACT

Understanding the determinants of metabolism is a core ecological topic since it permits to link individual energetic requirements to the ecology of communities and ecosystems. Yet, besides temperature, metabolic responses to environmental factors remain poorly understood. For example, it is commonly assumed that dietary stoichiometric constraints increase metabolism of small invertebrates despite scarce experimental support. Here, we used microcalorimetric measurements to determine the standard metabolic rate (SMR) of Daphnia magna fed stoichiometrically balanced (C/P: 166) or imbalanced (C/P: 1439). Daphnids fed imbalanced maintained their stoichiometric homeostasis within narrow boundaries. However, they consistently increased their SMR while decreasing their growth rate. Our measurements demonstrate that homeostatic regulation implies higher metabolic costs, thereby reducing available energy for growth. We demonstrate that microcalorimetry is a powerful and precise tool for measuring small-sized organisms' metabolic rate, thus opening promising perspectives for understanding how environmental factors, such as nutritional constraints, affect organismal metabolism.


Subject(s)
Daphnia , Energy Metabolism , Animals , Daphnia/metabolism , Temperature
5.
Environ Microbiol Rep ; 8(5): 689-698, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27264016

ABSTRACT

The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.

6.
Ecotoxicology ; 23(9): 1648-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25129149

ABSTRACT

Soil phototrophic microorganisms, contributors to soil health and food webs, share their particular metabolism with plants. Current agricultural practices employ mixtures of pesticides to ensure the crops yields and can potentially impair these non-target organisms. However despite this environmental reality, studies dealing the susceptibility of phototrophic microorganisms to pesticide mixtures are scarce. We designed a 3 months microcosm study to assess the ecotoxicity of realistic herbicide mixtures of formulated S-metolachlor (Dual Gold Safeneur(®)), mesotrione (Callisto(®)) and nicosulfuron (Milagro(®)) on phototrophic communities of two soils (Limagne vertisol and Versailles luvisol). The soils presented different colonizing communities, with diatoms and chlorophyceae dominating communities in Limagne soil and cyanobacteria and bryophyta communities in Versailles soil. The results highlighted the strong impairment of Dual Gold Safeneur(®) treated microcosms on the biomass and the composition of both soil phototrophic communities, with no resilience after a delay of 3 months. This study also excluded any significant mixture effect on these organisms for Callisto(®) and Milagro(®) herbicides. We strongly recommend carrying on extensive soil studies on S-metolachlor and its commercial formulations, in order to reconsider its use from an ecotoxicological point of view.


Subject(s)
Cyanobacteria/drug effects , Diatoms/drug effects , Herbicides/toxicity , Soil Microbiology , Soil Pollutants/toxicity , Acetamides/toxicity , Cyanobacteria/growth & development , Cyclohexanones/toxicity , Diatoms/growth & development , France , Phototrophic Processes , Pyridines/toxicity , Sulfonylurea Compounds/toxicity
7.
Environ Sci Technol ; 41(17): 6066-73, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17937283

ABSTRACT

To probe the reactivity of 2,4,6-trimethylphenol with humic triplet excited states, we investigated its influence on the humic substances-mediated photooxygenation offurfuryl alcohol. Elliott soil humic and fulvic acids were employed for these experiments. When added in the concentration range of 10(-4) - 10(-3) M, 2,4,6-trimethylphenol inhibited furfuryl alcohol photooxygenation to an extent depending on its concentration. The inhibiting effect decreased as the oxygen concentration was increased. By postulating that 2,4,6-trimethylphenol competes with oxygen for reaction with humic triplet excited states and with furfuryl alcohol for reaction with singlet oxygen, we obtained kinetic laws describing the consumption profiles of furfuryl alcohol and 2,4,6-trimethylphenol. Experimental rates of 2,4,6-trimethylphenol and furfuryl alcohol loss could be satisfactorily fitted with 1.09-1.16 for the ratio k2/k3, where k2 and k3 are the reaction rate constants of humic triplet excited states with oxygen and 2,4,6-trimethylphenol, respectively. These types of experiments could be extended to a variety of substrates to measure their reaction rate constants with humic triplet excited states.


Subject(s)
Cresols/chemistry , Furans/chemistry , Humic Substances , Oxygen/chemistry , Soil Pollutants/chemistry , Kinetics , Photochemistry , Singlet Oxygen/chemistry
8.
Chemosphere ; 65(11): 2185-92, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16860369

ABSTRACT

The behaviour of 4,4'-bis(2-sulfostyryl)biphenyl (DSBP), a fluorescent whitening agent, was investigated in the presence of Fe(III) aquacomplexes at room temperature. In the dark, a two-step reaction was observed when adding Fe(III) to a solution of DSBP: an initial fast redox reaction between DSBP and the monomeric species Fe(OH)(2+) and a slower reaction leading to the coagulation of oxidised DSBP and iron. This phenomenon is due to the formation of a complex or an ion-pair between Fe(II) and/or Fe(III) with oxidised DSBP and it probably occurs by charge neutralisation in our experimental conditions. The precipitation of DSBP depends on the initial concentration in Fe(OH)(2+) and is achieved for a ratio [Fe(OH) (2+)]/[DSBP] of 5 approximately. Under irradiation at 365 nm, a complicated behaviour was observed: a complexation of iron by oxidised DSBP favoured by irradiation and a degradation of DSBP induced by an intramolecular electron transfer in the complex or by a photoredox of Fe(OH)(2+) species generating .OH radicals in the supernatant. The complete degradation of DSBP is reached four times faster in the presence of Fe(III) with respect to the direct photolysis of DSBP alone. Moreover, the total mineralization of DSBP obtained in less than 120 h upon irradiation at 365 nm is only observed in the presence of the ferric ions, enlightening the efficiency of the method involving Fe(III) and UV irradiation.


Subject(s)
Ferric Compounds/chemistry , Laundering , Stilbenes/chemistry , Fluorescence , Oxidation-Reduction , Photochemistry
9.
Photochem Photobiol Sci ; 4(6): 451-3, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15920627

ABSTRACT

Humic substances at a concentration of 0.42 mmol l(-1) of carbon are able to phototransform up to 0.68 mmol l(-1) of 2,4,6-trimethylphenol upon irradiation at 365 nm, which shows that a catalytic reaction is operating.


Subject(s)
Cresols/chemistry , Cresols/radiation effects , Humic Substances/radiation effects , Benzopyrans/chemistry , Benzopyrans/radiation effects , Catalysis , Kinetics , Photochemistry , Time Factors , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...