Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Toxicol ; 54(1): 35-54, 2024 01.
Article in English | MEDLINE | ID: mdl-38288970

ABSTRACT

Although studies show that pesticides, especially insecticides, may be toxic to humans, publications on the neurological effects of fungicides are scarce. As fungicides are used widely in Brazil, it is necessary to gather evidence to support actions aimed at safely using of these chemicals. We investigated through a systematic review of publications on the use of fungicides and consequences of exposure related to nervous system diseases or neurological disorders in humans. The protocol review was registered on PROSPERO and followed the guidelines of the PRISMA-Statement. As far as it is known, there is no apparent systematic review in the literature on this topic. The search was comprised of the following databases: PubMed; Web of Science; Scopus and EMBASE, using groups of Mesh terms and strategies specific to each database. Thirteen articles were selected for this review. Regarding the substances analyzed in the studies, some reported the use of fungicides in general, without separating them by type, while others summarized the categories of all pesticides by their function (insecticides, herbicides, fungicides, etc.) or chemical class (dithiocarbamate, dicarboximide, inorganic, etc.). However, most of the articles referred to fungicides that contain the metal manganese (Mn) in their composition. As for neurological disorders, articles addressed Parkinson's disease (PD), neurodevelopmental outcomes, extrapyramidal syndrome resembling PD, cognitive disorders, depression, neural tube defects, motor neurone disease, and amyotrophic lateral sclerosis. Most investigations pointed to exposure to fungicides, mainly maneb and mancozeb, leading to the development of at least one neurological disease, which suggests the need for further multicentric clinical trials and prospective studies for greater clarity of the research problem.


Subject(s)
Fungicides, Industrial , Insecticides , Nervous System Diseases , Pesticides , Humans , Fungicides, Industrial/toxicity , Prospective Studies , Nervous System Diseases/chemically induced , Risk Factors
2.
Environ Toxicol Pharmacol ; 93: 103874, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35537679

ABSTRACT

This work presents a frequency matched observational study comparing flower farmers exposed to pesticides and unexposed individuals as controls. All subjects were interviewed before plasma and urine collection. Manganese and Zinc were measured in theses samples by using dynamic reaction cell inductively coupled mass spectrometry. Cholinesterase activity was analyzed through spectrophotometry by using a modified version of the Ellman method. Seventy-eight percent of subjects reported occupational contact with pesticides, from which 37% reported exposure for over 9 years. Flower farms farmers had increased odds of having headache and irritability, respectively, by factors of 6.2 and 2.4 than the control subjects. While the odds of exposed subjects to have insomnia was smaller than control subjects by a factor of 0.34. Exposure to pesticides had a significant effect regarding the plasmatic plasma and urinary manganese levels and whole blood cholinesterase activity (p < 0.05). High levels of plasma and urinary manganese, as well as cholinesterase inhibition in whole blood, were evident in the flower farmers who participated in the study.


Subject(s)
Occupational Exposure , Pesticides , Brazil , Cholinesterases , Farmers , Flowers/chemistry , Humans , Manganese/analysis , Manganese/toxicity , Metals , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Pesticides/analysis , Pesticides/toxicity
3.
Toxicol Mech Methods ; 32(9): 637-649, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35387549

ABSTRACT

Compilation studies related to toxicological aspects and also biological monitoring and analysis methods for specific fungicides and, mainly, those that belong to the class of the dithiocarbamates (DTCs) have not been carried out at least in the last ten years. DTCs - dimethyldithiocarbamates, ethylenebisditiocarbamates, propylenebisditiocarbamates - are organosulfur compounds that form complexes due to the presence of different chemical elements, which bind strongly and inhibit enzymes that are essential to the functioning of the organism, causing a serious proven adverse effect on biological systems, such as alteration of thyroid hormones, teratogenesis and neurotoxicity. It is still evident, as shown by world data, that the growing consumption of fungicides has increasingly exposed the population in general and, in particular, workers who deal with these substances. There is a scarcity of studies in the literature discussing the toxicological and analytical aspects that are important for understanding the real effects of DTCs and monitoring human exposure to them. Therefore, the aim of this work was to expose, in a comprehensive way and through a narrative review, gaps in research related to the fungicides of the DTCs class, their metabolites, as well as the toxicological and analytical aspects involved. The review is divided into two parts: (1) Toxicological aspects, including toxicokinetics, toxicodynamics and toxidromes; and (2) Analytical Toxicology, which comprises biomarkers, sample preparation and identification/quantification methods.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/toxicity , Humans , Toxicokinetics
4.
Environ Sci Pollut Res Int ; 28(37): 51841-51853, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33991300

ABSTRACT

This is a cross-sectional study with data and biological material collection from vineyard farmers in southern Brazil. An interview was carried out through a questionnaire developed according to the reference guide of the state government. Plasma and urine samples were screened for Aluminum, Chromium, Manganese, Copper, Nickel, Cobalt, Zinc, Arsenic, Selenium, Cadmium, Antimony, Barium, Mercury, Lead and Uranium, with a technique for fast determination of these elemental contents in biological material utilizing dynamic reaction cell inductively coupled mass spectrometry. Principal component analysis was used to identify associations between these elemental contents in biological samples and the information obtained from the interviews. The farmers showed some trace elements in plasma and urine at a higher concentration than unexposed populations from other studies. This study highlights recent findings of trace elements in biological material and their association with characteristics of pesticide use. In addition, it also contributes to the gap in the literature regarding trace elements content in plasma and urine of workers exposed to pesticides.


Subject(s)
Pesticides , Trace Elements , Brazil , Cross-Sectional Studies , Farmers , Farms , Humans , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...