Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 17(7): 5153-62, 2009 Mar 30.
Article in English | MEDLINE | ID: mdl-19333279

ABSTRACT

We report on a significant improvement of the total bandwidth amplified in an optical parametric process. By pumping a parametric amplifier with a broadband pump, we demonstrate amplification of a supercontinuum whose spectrum expands over nearly an octave ranging from less than 600 nm up to 1200 nm. Our amplifier stage is set to provide amplification at degeneracy in the quasi-collinear configuration with a temporally as well as angularly dispersed pump.


Subject(s)
Computer-Aided Design , Equipment Failure Analysis , Lasers, Solid-State , Equipment Design , Reproducibility of Results , Sensitivity and Specificity
2.
Opt Lett ; 33(2): 107-9, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18197207

ABSTRACT

We report on the study of direct amplification of femtosecond pulses in an 80 mum core diameter microstructured Yb-doped rod-type fiber amplifier in the nonlinear regime. The system includes a compact single grating compressor for the compensation of the small dispersion in the amplifier. With a 1250 line/mm (l/mm) grating-based compressor, pulses as short as 49 fs with 870 nJ pulse energy and 12 MW peak power are obtained. Alternatively, the use of a 1740 l/mm grating allows the production of higher quality pulses of 70 fs, 1.25 microJ pulse energy, and 16 MW peak power.

3.
Opt Express ; 15(9): 5699-710, 2007 Apr 30.
Article in English | MEDLINE | ID: mdl-19532828

ABSTRACT

We report on an optical parametric amplification system which is pumped and seeded by fiber generated laser radiation. Due to its low broadening threshold, high spatial beam quality and high stability, the fiber based broad bandwidth signal generation is a promising alternative to white light generation in bulky glass or sapphire plates. We demonstrate a novel and successful signal engineering implemented in a setup for parametric amplification and subsequent recompression of resonant linear waves resulting from soliton fission in a highly nonlinear photonic crystal fiber. The applied pump source is a high repetition rate ytterbium-doped fiber chirped pulse amplification system. The presented approach results in the generation of ~50 fs pulses at MHz repetition rate. The potential of generating even shorter pulse duration and higher pulse energies will be discussed.

4.
Opt Express ; 14(11): 4765-73, 2006 May 29.
Article in English | MEDLINE | ID: mdl-19516633

ABSTRACT

We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

5.
Opt Express ; 13(19): 7386-92, 2005 Sep 19.
Article in English | MEDLINE | ID: mdl-19498762

ABSTRACT

We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

SELECTION OF CITATIONS
SEARCH DETAIL
...