Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 96(6): 2621-6, 1999 Mar 16.
Article in English | MEDLINE | ID: mdl-10077560

ABSTRACT

We have recently discovered that cationic cholesterol derivatives characterized by guanidinium polar headgroups are very efficient for gene transfection in vitro and in vivo. In spite of being based on some rationale at the molecular level, the development of these new synthetic vectors was nevertheless empirical. Indeed, the factors and processes underlying cationic lipid-mediated gene transfer are still poorly understood. Thus, to get a better insight into the mechanisms involved, we have examined the supramolecular structure of lipid/DNA aggregates obtained when using reagent bis(guanidinium)-tren-cholesterol (BGTC), either alone or as a liposomal formulation with the neutral phospholipid dioleoyl phosphatidylethanolamine (DOPE). We here report the results of cryotransmission electron microscopy studies and small-angle x-ray scattering experiments, indicating the presence of multilamellar domains with a regular spacing of 70 A and 68 A in BGTC/DOPE-DNA and BGTC-DNA aggregates, respectively. In addition, DNA lipoplexes with similar lamellar patterns were detected inside transfected HeLa cells by conventional transmission electron microscopy. These results suggest that DNA condensation by multivalent guanidinium-cholesterol cationic lipids involves the formation of highly ordered multilamellar domains, the DNA molecules being intercalated between the lipid bilayers. These results also invite further investigation of the intracellular fate of the internalized lipid/DNA structures during their trafficking toward the cell nucleus. The identification of the basic features of active complexes should indeed help in the design of improved guanidinium-based vectors.


Subject(s)
Cholesterol/chemistry , DNA/chemistry , Gene Transfer Techniques , Genetic Vectors/chemistry , Guanidine/chemistry , DNA/ultrastructure , Genetic Vectors/ultrastructure , HeLa Cells , Humans , Microscopy, Electron , X-Ray Diffraction
2.
Proc Natl Acad Sci U S A ; 94(26): 14412-7, 1997 Dec 23.
Article in English | MEDLINE | ID: mdl-9405626

ABSTRACT

Gene therapy is based on the vectorization of genes to target cells and their subsequent expression. Cationic amphiphile-mediated delivery of plasmid DNA is the nonviral gene transfer method most often used. We examined the supramolecular structure of lipopolyamine/plasmid DNA complexes under various condensing conditions. Plasmid DNA complexation with lipopolyamine micelles whose mean diameter was 5 nm revealed three domains, depending on the lipopolyamine/plasmid DNA ratio. These domains respectively corresponded to negatively, neutrally, and positively charged complexes. Transmission electron microscopy and x-ray scattering experiments on complexes originating from these three domains showed that although their morphology depends on the lipopolyamine/plasmid DNA ratio, their particle structure consists of ordered domains characterized by even spacing of 80 A, irrespective of the lipid/DNA ratio. The most active lipopolyamine/DNA complexes for gene transfer were positively charged. They were characterized by fully condensed DNA inside spherical particles (diameter: 50 nm) sandwiched between lipid bilayers. These results show that supercoiled plasmid DNA is able to transform lipopolyamine micelles into a supramolecular organization characterized by ordered lamellar domains.


Subject(s)
DNA, Circular/genetics , Gene Transfer Techniques , Genetic Vectors , Plasmids/genetics , Viruses/genetics , Polyamines , Viruses/metabolism , Viruses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...