Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Vaccines (Basel) ; 11(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36851272

ABSTRACT

BACKGROUND: The adjuvants' optimal dose and the administration route can directly influence the epitope recognition patterns and profiles of innate response. We aimed to establish the effect and the optimal dose of adjuvant systems for proposing a vaccine candidate to be employed with Leishmania (Viannia) braziliensis. METHODS: We evaluated the adjuvants saponin (SAP), monophosphoryl lipid A (MPL) and resiquimod (R-848) isolated and combined as adjuvant systems in a lower dose corresponding to 25%, 33%, and 50% of each adjuvant total dose. Male outbred BALB/c mice were divided into 13 groups, SAP, MPL, and R-848 isolated, and the adjuvant systems SAP plus MPL (SM), SAP plus R-848 (SR), and MPL plus R-848 (MR). RESULTS: SM50 increased levels of all chemokines analyzed and TNF production, while it presented an increased inflammatory cell infiltrate in the skin with macrophage recruitment. Thus, we proposed a vaccine candidate employing L. (V.) braziliensis antigen associated with the SM adjuvant system against experimental L. (Leishmania) infantum challenge. We observed a significant increase in the frequency of cells expressing the central and effector memory CD4+ T cells phenotype in immunized mice with the LBSM50. In the liver, there was a decreased parasite load when mice received LBSM50. CONCLUSIONS: When combined with L. (V.) braziliensis antigen, SM50 increases TNF and IFN-γ, which generates central and effector memory CD4+ T cells. Therefore, using an adjuvant system can promote an effective innate immune response with the potential to compose future vaccines.

2.
Vaccine ; 40(37): 5494-5503, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35963820

ABSTRACT

In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Th1 Cells , Animals , Cricetinae , Dogs , Humans , Mice , Adjuvants, Immunologic , Antigens, Protozoan , Cytokines , Dog Diseases , Epitopes, T-Lymphocyte , Leishmaniasis, Visceral/prevention & control , Mice, Inbred BALB C , Spleen
3.
Parasitology ; 149(3): 371-379, 2022 03.
Article in English | MEDLINE | ID: mdl-35264268

ABSTRACT

The control of human visceral leishmaniasis (VL) is hard since there are no vaccines available as well as the treatment is hampered by toxicity and resistant parasites. Furthermore, as human, and canine VL causes immunosuppression, the combination of drugs with immunostimulatory agents is interesting to upregulate the immunity, reducing side-effects, improving treatment approaches against disease. Herein, we assessed the immunochemotherapy using miltefosine along with a vaccine formulated by Leishmania braziliensis antigens + saponin + monophosphoryl lipid-A (LBSapMPL) in L. infantum-infected hamsters. Two months after infection, the animals received treatments, and after 15 days they were evaluated for the treatment effect. The potential anti-Leishmania effect of miltefosine + LBSapMPL-vaccine was revealed by a specific immune response activation reflecting in control of spleen parasitism using half the miltefosine treatment time. The treated animals also showed an increase of total and T-CD4 splenocytes producing IFN-γ and TNF-α and a decrease of interleukin-10 and anti-Leishmania circulating IgG. In addition, it was demonstrated that the control of spleen parasitism is related to the generation of a protective Th1 immune response. Hence, due to the combinatorial action of miltefosine with LBSapMPL-vaccine in immunostimulating and controlling parasitism, this immunochemotherapy protocol can be an important alternative option against canine and human VL.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Animals , Antigens, Protozoan , Cricetinae , Dogs , Immunity , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/prevention & control , Mice , Mice, Inbred BALB C , Phosphorylcholine/analogs & derivatives , Spleen/parasitology
4.
Mol Immunol ; 141: 70-78, 2022 01.
Article in English | MEDLINE | ID: mdl-34814056

ABSTRACT

This study compared the therapeutic potential of the chemotherapy using meglumine antimoniate encapsulated in a mixture of conventional and PEGylated liposomes (Nano Sbv) and immunotherapy with anti-canine IL-10 receptor-blocking monoclonal antibody (Anti IL-10R) on canine visceral leishmaniasis (CVL). Twenty mongrel dogs naturally infected by L. infantum, displaying clinical signs of visceral leishmaniasis were randomly divided in two groups. In the first one, nine dogs received six intravenous doses of a mixture of conventional and PEGylated liposomes containing meglumine antimoniate at 6.5 mg Sb/kg/dose. In the second one, eleven dogs received two intramuscular doses of 4 mg of anti-canine IL-10 receptor-blocking monoclonal antibody. The animals were evaluated before (T0) and 30, 90, and 180 days after treatments. Our major results demonstrated that both treatments were able to maintain hematological and biochemical parameters, increase circulating T lymphocytes subpopulations, increase the IFN-γ producing T-CD4 lymphocytes, restore the lymphoproliferative capacity and improve the clinical status. However, although these improvements were observed in the initial post-treatment times, they did not maintain until the end of the experimental follow-up. We believe that the use of booster doses or the association of chemotherapy and immunotherapy (immunochemotherapy) is promising to improve the effectiveness of treating CVL for improving the clinical signs and possibly reducing the parasite burden in dogs infected with Leishmania infantum.


Subject(s)
Antibodies, Monoclonal/pharmacology , Dog Diseases/drug therapy , Leishmaniasis, Visceral/drug therapy , Liposomes/chemistry , Meglumine Antimoniate/pharmacology , Polyethylene Glycols/chemistry , Receptors, Interleukin-10/antagonists & inhibitors , Allopurinol/pharmacology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Dog Diseases/metabolism , Dogs , Immunologic Factors/metabolism , Immunotherapy/methods , Leishmania infantum/drug effects , Leishmaniasis, Visceral/metabolism , Organometallic Compounds/pharmacology
5.
Vaccine ; 39(20): 2755-2763, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33875268

ABSTRACT

In Brazil, canine visceral leishmaniasis is an important public health problem due to its alarming growth. The high prevalence of infected dogs reinforces the need for a vaccine for use in prophylactic vaccination campaigns. In the present study, we evaluate the immunogenicity and protection of the best dose of Chimera A selected through the screening of cytokines production important in disease. BALB/c mice were vaccinated subcutaneously with three doses and challenged intravenously with 1 × 107L. infantum promastigotes. Spleen samples were collected to assess the intracellular cytokine profile production, T cell proliferation and parasite load. At first, three different doses of Chimera A (5 µg, 10 µg and 20 µg) were evaluated through the production of IFN-γ and IL-10 cytokines. Since the dose of 20 µg showed the best results, it was chosen to continue the study. Secondarily, Chimera A at dose of 20 µg was formulated with Saponin plus Monophosphoryl lipid A. Vaccination with Chimera A alone and formulated with SM adjuvant system was able to increase the percentage of the proliferation of specific T lymphocytes and stimulated a Th1 response with increased levels of IFN-γ, TNF-α and IL-2, and decreased of IL-4 and IL-10. The vaccine efficacy through real-time PCR demonstrated a reduction in the splenic parasite load in animals that received Chimera A formulated with the SM adjuvant system (92%). Additionally, we observed increased levels of nitric oxide in stimulated-culture supernatants. The Chimera A formulated with the SM adjuvant system was potentially immunogenic, being able to induce immunoprotective mechanisms and reduce parasite load. Therefore, the use of T-cell multi-epitope vaccine is promising against visceral leishmaniasis.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Adjuvants, Immunologic , Animals , Antigens, Protozoan , Brazil , Cytokines , Dogs , Leishmaniasis, Visceral/prevention & control , Mice , Mice, Inbred BALB C
7.
Curr Res Immunol ; 2: 194-201, 2021.
Article in English | MEDLINE | ID: mdl-35492387

ABSTRACT

Visceral leishmaniasis (VL) is a serious and neglected disease present worldwide. Chemotherapy using pentavalent antimony (SbV) is the most practical and inexpensive strategy available for the VL treatment today, however, it has high toxicity. Alternatively, other drugs are used as viable leishmanicidal therapeutic options. Miltefosine is the only anti-leishmanial agent administered orally, however, it has been reducing its effectiveness. In this sense, there is no ideal therapy for VL since the drugs currently used trigger severe side effects causing discontinuation of treatment, which carries an imminent risk for the emergence of parasite resistance. With that, other therapeutic strategies are gaining prominence. Among them, immunotherapy and/or immunochemotherapy, which the activation/modulation of the immune system can redirect the host's immune response to an effective therapeutic result. Therefore, this work was designed to assess an immunochemotherapy protocol composed of half course of Miltefosine associated with LBSap vaccine (Milt+LBSap) using the hamster Mesocricetus auratus as an experimental model for VL treatment. When evaluating the main hematobiochemical, immunological and therapeutic efficacy parameters, it was demonstrated that the treatment with Milt+LBSap showed restoration of hematobiochemical condition and reduced serum levels of IgG-anti-Leishmania compared to animals infected non treated (INT). Beyond that, an increase in the number of CD4+ lymphocytes producers of IFN-γ in relation to INT or to animals treated with miltefosine during 28 days, and TNF-α increased compared to INT were observed. Also, it was found a reduction of IL-10-production in relation to INT, or animals that received LBSap vaccine only, or miltefosine, following by a reduction in the splenic parasitic burden. These results demonstrate that the immunochemotherapy protocol used can stimulate the immune response, inducing an expressive cellular response sufficient to control spleen parasitism, standing out as a promising proposal for the VL treatment.

8.
Front Bioeng Biotechnol ; 8: 538203, 2020.
Article in English | MEDLINE | ID: mdl-33344427

ABSTRACT

The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.

9.
Vaccines (Basel) ; 8(4)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212786

ABSTRACT

In this study, we performed a phase I and II clinical trial in dogs to evaluate the toxicity and immunogenicity of LBSap-vaccine prototype, in comparison to Leishmune® and Leish-Tec® vaccines. Twenty-eight dogs were classified in four groups: (i) control group received 1 mL of sterile 0.9% saline solution; (ii) LBSap group received 600 µg of Leishmania braziliensis promastigotes protein and 1 mg of saponin adjuvant; (iii) Leishmune®; and (iv) Leish-Tec®. The safety and toxicity of the vaccines were measured before and after three immunizations by clinical, biochemical, and hematological parameters. The clinical examinations revealed that some dogs of LBSap and Leishmune® groups presented changes at the site of vaccination inoculum, such as nodules, mild edema, and local pain, which were transient and disappeared seventy-two hours after vaccination, but these results indicate that adverse changes caused by the immunizations are tolerable. The immunogenicity results demonstrate an increase of B lymphocytes CD21+ regarding the Leishmune® group and monocytes CD14+ concerning LBSap and Leishmune® groups. In the in vitro analyses, an increase in lymphoproliferative activity in LBSap and Leishmune® groups was observed, with an increase of antigen-specific CD4+ and CD8+ T lymphocytes in the LBSap group. A second approach of in vitro assays aimed at evaluating the percentage of antigen-specific CD4+ and CD8+ T lymphocytes producers of IFN-γ and IL-4, where an increase in both IFN-γ producing subpopulations in the LBSap group was observed, also showed an increase in IFN-γ producers in CD8+ lymphocytes in the Leish-Tec® group. Our data regarding immunogenicity indicate that the vaccination process, especially with the LBSap vaccine, generated a protective immune response compatible with L. infantum parasite control. Based on the foregoing, the LBSap vaccine would be suitable for further studies of phase III clinical trial in endemic areas with high prevalence and incidence of canine visceral leishmaniasis (VL) cases.

10.
Parasitol Res ; 119(12): 4185-4195, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33033848

ABSTRACT

Leishmania spp. parasites have a complex biological cycle presenting basically two different morphological stages, the amastigote and promastigote forms. In vitro cultivation allows a more complete study of the biological aspects of these parasites, indicating better conditions for infection, immunoassay tests, drug evaluations, and vaccines. Thus, we evaluated the three most used culture media for Leishmania spp., Grace's insect cell culture medium (Grace's), liver infusion tryptose (LIT), and Schneider's insect medium (Schneider's), without supplementation or supplemented with fetal calf serum (FCS) and bovine serum albumin (Albumin) to evaluate the growth, viability, and infectivity of the L. infantum promastigotes. It was observed that promastigote forms have a better growth in LIT and Schneider's with or without FCS when compared to that in Grace's. The supplementation with albumin promoted greater viability of the parasites independent of the medium. For in vitro infection of J774.A1 macrophages using light microscopy and flow cytometry analyses, FCS-supplemented LIT and Grace's promoted higher percentage of infected macrophages and parasite load compared with Schneider's media. Taken together, our results demonstrated that the supplementation of LIT culture medium with FCS is the most suitable strategy to cultivate Leishmania infantum parasites enabling the maintenance of growth and infective parasites for research uses.


Subject(s)
Leishmania infantum/drug effects , Leishmania infantum/growth & development , Liver/enzymology , Parasitology/methods , Animals , Cells, Cultured , Culture Media/chemistry , Culture Media/pharmacology , Leishmania infantum/physiology , Life Cycle Stages/drug effects , Macrophages/parasitology , Mice , Organic Chemicals/analysis , Organic Chemicals/pharmacology
11.
Front Med (Lausanne) ; 7: 496, 2020.
Article in English | MEDLINE | ID: mdl-32984376

ABSTRACT

Visceral leishmaniasis (VL) is a severe disease caused by Leishmania infantum. Dogs are the parasite's main reservoir, favoring its transmission in the urban environment. The analysis of L. infantum from infected dogs contributes to the identification of more virulent parasites, thereby supporting basic and applied studies such as vaccinal and therapeutic strategies. We proposed the in vitro and in vivo characterization of L. infantum strains from naturally infected dogs from a VL endemic area based on an infectivity and pathogenicity analysis. DH82 canine macrophages were infected in vitro with different strains for infectivity analysis, showing distinct infectivity profiles. The strains that showed greater and lesser infectivity using in vitro analyses (616 and 614, respectively) were used to infect hamsters for pathogenicity analysis. The group infected with strain 616 showed 100% survival while the group infected with strain 614 showed 50% after seven months of follow up. Furthermore, the 614 strain induced more noticeable clinicopathological changes and biochemical abnormalities in liver function, along with high inflammation and parasite load in the liver and spleen. We confirmed high variability of infectivity and pathogenicity in L. infantum strains from infected dogs. The results support the belief that screening for L. infantum infectivity using in vitro experiments is inadequate when it comes to selecting the most pathogenic strain.

12.
Appl Microbiol Biotechnol ; 104(19): 8105-8116, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32845368

ABSTRACT

Leishmaniasis is a set of complex and multifaceted syndromes, with different clinical manifestations, caused by different species of the genus Leishmania spp. that can be characterized by at least four syndromes: visceral leishmaniasis (VL, also known as kala-azar), post-kala-azar dermal leishmaniasis (PKDL), cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL). Among the most serious clinical forms, VL stands out, which causes the death of around 59,000 people annually. Fast and accurate diagnosis in VL is essential to reduce the disease's morbidity and mortality. There are a large number of diagnostic tests for leishmaniasis, however they do cross-react with other protozoa and their sensitivity changes according to the clinical form of the disease. Thus, it is essential and necessary to provide a diagnosis that is sufficiently sensitive to detect asymptomatic infected individuals and specific to discriminate individuals with other infectious and parasitic diseases, thus enabling more accurate diagnostic tools than those currently used. In this context, the aim of this review is to summarize the conventional diagnostic tools and point out the new advances and strategies on visceral and cutaneous leishmaniasis diagnosis.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Diagnostic Tests, Routine , Humans , Leishmaniasis, Cutaneous/diagnosis
13.
Drug Deliv Transl Res ; 10(6): 1626-1643, 2020 12.
Article in English | MEDLINE | ID: mdl-32613549

ABSTRACT

Near-infrared fluorescent dyes, such as IR780, are promising theranostics, acting as photosensitizers for photodynamic therapy and in vivo tracers in image-guided diagnosis. This work compared the uptake by macrophage-like cells of IR780 either physically associated or covalently attached to poly(D,L-lactide) (PLA) formulated as polymeric nanocapsules (NC) from a blend of PLA homopolymer and PLA-PEG block copolymer. The physicochemical characterization of both NC was conducted using asymmetric flow field-flow fractionation (AF4) analysis with static and dynamic light scattering and atomic force microscopy. The interaction of IR780 with serum proteins was evidenced by AF4 with fluorescence detection and flow cytometry in cell uptake studies. The average diameters of NC were around 120 nm and zeta potentials close to -40 mV for all NC. NC uptake by cells in different media and experimental conditions shows significantly lower fluorescence intensities for IR780 covalently linked to PLA and correspondingly low quantitative uptake. Different mechanisms of internalization were evidenced depending on the IR780 type of association to NC. Serum proteins mediate IR780 interaction with cells in a dose-dependent manner. Our results show that non-covalently linked IR780 was released from NC and accumulated in macrophage cells. Oppositely, IR780 conjugated to PLA provides stable association with NC, and its fluorescence is representative of cell uptake of the nanocarrier itself. This work strongly reinforces the importance of covalent attachment of a fluorescence dye such as IR780 to the nanocarrier to study their interaction with cells in vitro and to obtain reliable tracking in image-guided therapy. Graphical abstract.


Subject(s)
Drug Carriers/chemistry , Nanocapsules , Polyesters , Fluorescent Dyes , Polyethylene Glycols , Polymers
14.
Vaccines (Basel) ; 8(2)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471081

ABSTRACT

Many vaccine candidates against visceral leishmaniasis (VL) have been proposed; however, to date, none of them have been efficacious for the human or canine disease. On this basis, the design of leishmaniasis vaccines has been constantly changing, and the use of approaches to select specific epitopes seems to be crucial in this scenario. The ability to predict T cell-specific epitopes makes immunoinformatics an even more necessary approach, as in VL an efficient immune response against the parasite is triggered by T lymphocytes in response to Leishmania spp. immunogenic antigens. Moreover, the success of vaccines depends on the capacity to generate long-lasting memory and polyfunctional cells that are able to eliminate the parasite. In this sense, our study used a combination of different approaches to develop potential chimera candidate vaccines against VL. The first point was to identify the most immunogenic epitopes of Leishmania infantum proteins and construct chimeras composed of Major histocompatibility complex (MHC) class I and II epitopes. For this, we used immunoinformatics features. Following this, we validated these chimeras in a murine model in a thorough memory study and multifunctionality of T cells that contribute to a better elucidation of the immunological protective mechanisms of polyepitope vaccines (chimera A and B) using multicolor flow cytometry. Our results showed that in silico-designed chimeras can elicit polyfunctional T cells producing T helper (Th)1 cytokines, a strong immune response against Leishmania antigen, and the generation of central and effector memory T cells in the spleen cells of vaccinated animals that was able to reduce the parasite burden in this organ. These findings contribute two potential candidate vaccines against VL that can be used in further studies, and help in this complex field of vaccine development against this challenging parasite.

15.
Vaccines (Basel) ; 7(4)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661776

ABSTRACT

Reverse vaccinology or immunoinformatics is a computational methodology which integrates data from in silico epitope prediction, associated to other important information as, for example, the predicted subcellular location of the proteins used in the design of the context of vaccine development. This approach has the potential to search for new targets for vaccine development in the predicted proteome of pathogenic organisms. To date, there is no effective vaccine employed in vaccination campaigns against visceral leishmaniasis (VL). For the first time, herein, an in silico, in vitro, and in vivo peptide screening was performed, and immunogenic peptides were selected to constitute VL peptide-based vaccines. Firstly, the screening of in silico potential peptides using dogs naturally infected by L. infantum was conducted and the peptides with the best performance were selected. The mentioned peptides were used to compose Cockt-1 (cocktail 1) and Cockt-2 (cocktail 2) in combination with saponin as the adjuvant. Therefore, tests for immunogenicity, polyfunctional T-cells, and the ability to induce central and effector memory in T-lymphocytes capacity in reducing the parasite load on the spleen for Cockt-1 and Cockt-2 were performed. Among the vaccines under study, Cockt-1 showed the best results, eliciting CD4+ and CD8+ polyfunctional T-cells, with a reduction in spleen parasitism that correlates to the generation of T CD4+ central memory and T CD8+ effector memory cells. In this way, our findings corroborate the use of immunoinformatics as a tool for the development of future vaccines against VL.

16.
Vaccine ; 37(49): 7269-7279, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31575491

ABSTRACT

The poor immunogenicity displayed by some antigens has encouraged the development of strategies to improve the immune response and safety of vaccine candidates, resulting in an intense search for substances that potentiate vaccine response. Adjuvants have these properties helping vaccine candidates to induce a strong, durable, and fast immune response. In this study, we evaluated the specific immune response of adjuvants alone, Saponin (SAP), Incomplete Freund's Adjuvant (IFA) and Monophosphoryl lipid-A SE (MPL-SE®) and in combination with total antigen of L. braziliensis (LB): LBSAP, LBIFA and LBMPL. The specific immune response induced by these compositions demonstrated that they were powerfully immunogenic, increasing cellular infiltration in the skin. Draining lymph nodes cultures showed that LBIFA and LBMPL have higher ability to increase the capacity of APCs to present antigens, with increased frequency of CD11c+CD86+ cells. SAP, MPL, LBSAP, LBIFA and LBMPL could activate lymphocytes increasing expression of CD69 and CD25. LBSAP group was an excellent inducer of pro-inflammatory cytokines at 24 h. At 48 h, higher cytokines production was observed in IFA, LBIFA, MPL and LBMPL groups. Our data demonstrate that LBSAP and LBMPL are potential formulations to be tested in other experimental models. Also, the data obtained could expand the knowledge about immune response after sensitization and also contribute to the development of safe, immunogenic and effective vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Protozoan/immunology , Leishmania braziliensis/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/prevention & control , Animals , Antibodies, Protozoan/immunology , Antibody Formation/immunology , Freund's Adjuvant/immunology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Lipid A/analogs & derivatives , Lipid A/immunology , Lipids/immunology , Male , Mice , Saponins/immunology
17.
Vet Parasitol ; 243: 260-266, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28807304

ABSTRACT

Canine visceral leishmaniosis (CVL) is a zoonosis of major public health impact caused by organisms of the genus Leishmania which is transmitted to human and animals by phlebotomine sand flies. The skin is the first point of contact with Leishmania parasites for sandy fly vectors and it is considered an important reservoir compartment in infected dogs. The aim of this study was to determine the main histophatologic alterations in ear skin of dogs naturally infected by Leishmania infantum with different clinical status and different degrees of parasitism. Therefore, thirty-four dogs naturally infected with L. infantum were grouped according to their clinical status in asymptomatic (AD, n=11), oligosymptomatic (OD, n=11) and symptomatic dogs (SD, n=12) as well as their degrees of parasite load in the skin as low (LP, n=11), median (MP, n=11) and high (HP, n=12) parasitism. Additionally, ten dogs were used as control (CD, n=10). At necropsy, skin samples were collected for further histological and parasitological analysis. The OD and SD groups presented higher parasite burden than AD group. The inflammation was higher in SD group when compared to OD and AD. The LP, MP and HP groups showed an increasing inflammatory process, indicating that a great parasite load is accompanied by a major inflammatory process in the skin. The number of mast cells was higher in the OD and LP groups than CD group, suggesting that these cells may be involved in tissue remodeling, since that an increase of type III collagen fibers and decrease type I collagen fibers were observed in these groups. Taken together, our results enable a better understanding of the alterations in skin of CVL dogs and consequently new insights about the pathogenesis of CVL.


Subject(s)
Dog Diseases/parasitology , Leishmaniasis, Visceral/veterinary , Mast Cells/physiology , Skin/pathology , Skin/parasitology , Animals , Dog Diseases/pathology , Dogs , Female , Leishmania infantum , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/pathology , Male
18.
Front Immunol ; 8: 217, 2017.
Article in English | MEDLINE | ID: mdl-28321217

ABSTRACT

Herein, we evaluated the treatment strategy employing a therapeutic heterologous vaccine composed of antigens of Leishmania braziliensis associated with MPL adjuvant (LBMPL vaccine) for visceral leishmaniasis (VL) in symptomatic dogs naturally infected by Leishmania infantum. Sixteen dogs received immunotherapy with MPL adjuvant (n = 6) or with a vaccine composed of antigens of L. braziliensis associated with MPL (LBMPL vaccine therapy, n = 10). Dogs were submitted to an immunotherapeutic scheme consisting of 3 series composed of 10 subcutaneous doses with 10-day interval between each series. The animals were evaluated before (T0) and 90 days after treatment (T90) for their biochemical/hematological, immunological, clinical, and parasitological variables. Our major results showed that the vaccine therapy with LBMPL was able to restore and normalize main biochemical (urea, AST, ALP, and bilirubin) and hematological (erythrocytes, hemoglobin, hematocrit, and platelets) parameters. In addition, in an ex vivo analysis using flow cytometry, dogs treated with LBMPL vaccine showed increased CD3+ T lymphocytes and their subpopulations (TCD4+ and TCD8+), reduction of CD21+ B lymphocytes, increased NK cells (CD5-CD16+) and CD14+ monocytes. Under in vitro conditions, the animals developed a strong antigen-specific lymphoproliferation mainly by TCD4+ and TCD8+ cells; increasing in both TCD4+IFN-γ+ and TCD8+IFN-γ+ as well as reduction of TCD4+IL-4+ and TCD8+IL-4+ lymphocytes with an increased production of TNF-α and reduced levels of IL-10. Concerning the clinical signs of canine visceral leishmaniasis, the animals showed an important reduction in the number and intensity of the disease signs; increase body weight as well as reduction of splenomegaly. In addition, the LBMPL immunotherapy also promoted a reduction in parasite burden assessed by real-time PCR. In the bone marrow, we observed seven times less parasites in LBMPL animals compared with MPL group. The skin tissue showed a reduction in parasite burden in LBMPL dogs 127.5 times higher than MPL. As expected, with skin parasite reduction promoted by immunotherapy, we observed a blocking transmission to sand flies in LBMPL dogs with only three positive dogs after xenodiagnosis. The results obtained in this study highlighted the strong potential for the use of this heterologous vaccine therapy as an important strategy for VL treatment.

19.
Parasit Vectors ; 9: 472, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27577735

ABSTRACT

BACKGROUND: In past years, many researchers have sought canine visceral leishmaniasis (CVL) prevention through the characterization of Leishmania antigens as vaccine candidates. Despite these efforts, there is still no efficient vaccine for CVL control. METHODS: In the present study, we performed a pre-clinical vaccine trial using BALB/c mice to compare the effects of the multicomponent LBSap vaccine with those of Leish-Tec® and Leishmune®. Blood was collected to determine the frequency of peripheral blood cells and to evaluate hematologic and immunophenotypic parameters. Liver and spleen samples were collected for parasitological quantification, and spleen samples were used to access the cytokine profile. RESULTS: When measuring total IgG and IgG1 anti-Leishmania levels after the third vaccination and L. infantum challenge, it was evident that all vaccines were able to induce humoral immune response. Regarding the innate immune response, increased levels of NK CD3(-)CD49(+) cells were the hallmark of all vaccinated groups, whereas only the Leish-Tec® group displayed a high frequency of CD14(+) monocytes after L. infantum challenge. Moreover, CD3(+)CD4(+) T cells were the main circulating lymphocytes induced after L. infantum challenge with all evaluated vaccines. Importantly, after L. infantum challenge, splenocytes from the Leishmune® vaccine produced high levels of IL-2, whereas a prominent type 1 immune response was the hallmark of the LBSap vaccine, which presented high levels of IL-2, IL-6, TNF-α, and IFN-γ. The efficacy analysis using real-time polymerase chain reaction demonstrated a reduction in the parasitism in the spleen (Leishmune®: 64 %; LBSap: 42 %; and Leish-Tec®: 36 %) and liver (Leishmune®: 71 %; LBSap: 62 %; and Leish-Tec®: 48 %). CONCLUSIONS: The dataset led to the conclusion that the LBSap vaccination was able to induce immune and efficacy profiles comparable with those of commercial vaccines, thus demonstrating its potential as a promising vaccine candidate for visceral leishmaniasis control.


Subject(s)
Antigens, Protozoan/immunology , Leishmania/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/immunology , Animals , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Immunity, Innate , Immunoglobulin G/blood , Leishmania/metabolism , Liver/parasitology , Lymphocytes/classification , Lymphocytes/physiology , Mice , Mice, Inbred BALB C , Spleen/parasitology
20.
PLoS One ; 11(8): e0161169, 2016.
Article in English | MEDLINE | ID: mdl-27556586

ABSTRACT

Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-ß), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection.


Subject(s)
Dog Diseases/immunology , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/veterinary , Animals , Biomarkers , Brazil , Cytokines/metabolism , Dog Diseases/metabolism , Dog Diseases/prevention & control , Dogs , Female , Inflammation Mediators/metabolism , Leishmaniasis Vaccines/administration & dosage , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Models, Biological , Nitric Oxide/biosynthesis , Parasite Load , Spleen/immunology , Spleen/parasitology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...