Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 914: 170156, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38219692

ABSTRACT

Forest stand transformation is a crucial strategy for enhancing the productivity and stability of planted forest ecosystems and maximizing their ecosystem functions. However, understanding forest ecosystem multifunctionality responses to various stand transformation methods remains limited. In this study, we assessed ecosystem multifunctionality, encompassing nutrient cycling, carbon stocks, water regulation, decomposition, wood production, and symbiosis, under different stand transformation methods (Chinese fir monoculture, mixed conifer and broad-leaf, broad-leaf mixed, and secondary forests). We also identified key factors contributing to variations in ecosystem multifunctionality. The results showed that Chinese fir plantations were more conducive to carbon stock creation, while broad-leaved mixed plantations excelled in water regulation. Secondary forests exhibited higher ecosystem multifunctionality than other plantation types, with Chinese fir plantations displaying the highest multifunctionality, significantly surpassing mixed coniferous and broad-leaved plantations. Our findings further revealed that soil nutrients and plant diversity have significant impacts on ecosystem multifunctionality. In summary, stand transformation profoundly influences ecosystem multifunctionality, and mixed plantations do not necessarily provide higher ecosystem multifunctionality than monoculture plantations.


Subject(s)
Cunninghamia , Ecosystem , Forests , Soil , Trees , Carbon/analysis , Water , China
3.
BMC Genomics ; 24(1): 344, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349677

ABSTRACT

BACKGROUND: Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS: In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS: In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.


Subject(s)
Mitogen-Activated Protein Kinases , Moths , Animals , Mitogen-Activated Protein Kinases/genetics , Larva , MAP Kinase Signaling System/genetics , Moths/genetics , Tea , Phylogeny
4.
J Fungi (Basel) ; 9(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36983545

ABSTRACT

Red imported fire ants mounds have been suggested as a potential reservoir for beneficial entomopathogenic fungal species that are vital for more complex roles in the ecosystem aside from infecting the insects. In the current study, the assemblage of fungal symbionts of the red imported fire ants (RIFA) were obtained across five cities in Guangdong Province, China. The sampling areas were selected because of high occurrence of fire ants mounds in the regions. Mound soils, plant debris within mounds, and ants were collected from three sampling locations in each city for potential isolation of entomopathogenic fungal associates of RIFA. All samples were collected during the spring of 2021. Following successful isolation from substrates, the patterns of fungal species composition, and richness were evaluated. In total, 843 isolates were recovered, and based on their phenotypic distinctiveness and molecular characterization based on DNA sequences of multiple loci including the ITS, SSU, and LSU regions, 46 fungal taxa were obtained, including 12 that were unidentified. Species richness and abundance was highest in the mound soils, while the lowest value was recorded from the ant body. As per the different locations, the highest abundance level was recorded in Zhuhai, where 15 fungal taxa were cultivated. The most common taxa across all substrates and locations was Talaromyces diversus. A baseline analysis of the fungal community composition of RIFA would better our understanding on the interactions between these social ants and their associated microbial organisms, and this knowledge in turn would be important for the successful management of the RIFA.

5.
Pestic Biochem Physiol ; 157: 99-107, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31153482

ABSTRACT

The entmopathogenic fungus Lecaniicillium lecanii is a naturally available biological control and it is considered to be one of the best mycoinsecticide agents against the destructive insect pest Diaphorina citri Kuwayama. The present study aimed to extract and characterize the toxic insecticidal protein from L. lecanii and to assess the toxicity level against the Asian citrus psyllid the vector of Huanglongbing disease (HLB), also called citrus greening. Extracts of a toxic substance from submerged batch culture examined by sodium dodecyl sulfate-poly-acrylamide (SDS-PAGE), had a molecular weight of 45 kDa. The most abundant toxic metabolite was subjected to HPLC to purify and identified it by mass spectrometry. Subsequently, metabolite toxicity was tested against D. citri at three different concentrations (1%, 2%, and 3%). The results showed that the highest concentration had a significant maximum mortality at 120 h post application. Furthermore, we investigated the expression of the GAS1 gene which was previously identified to have a role in pathogenicity in in vivo studies in adult insect psyllids. Results of this study indicated that expression of the virulence factor gene was present at three concentrations of the fungal suspension post inoculation. This is the first study to provide this novel approach for the characterization of fungal mediated synthesis of a cuticle degrading soluble protein against the insect D. citri. The present results provide strong information on the in vivo expression of the GAS1 gene involved in fungal virulence pertaining to penetration of the insect cuticle, but not to inhibiting the growth of the host.


Subject(s)
Hemiptera/microbiology , Hypocreales/metabolism , Hypocreales/pathogenicity , Animals , Electrophoresis, Polyacrylamide Gel , Hypocreales/genetics , Virulence
6.
Int J Biol Macromol ; 125: 1203-1211, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30227211

ABSTRACT

Entomopathogenic fungi based microbial insecticides are considered as safe alternatives to chemical pesticides, which secretes several bioactive compounds to kill the host insects. In this study, we report a new approach for the synthesis and characterization of insecticide toxic protein IF8 produced by the Isaria fumosorosea 08, and to evaluate the mycotoxin level against the vector of Huanglongbing (HLB) or citrus greening disease, the Asian citrus psyllid, Diaphorina citri. Soluble toxic metabolites extracted from I. fumosorosea 08 through submerged liquid state culture had a molecular weight of 43 kDa when subjected by to sodium dodecyl sulfate-poly-acrylamide (SDS-PAGE) gel electrophoresis. The most abundant of toxic protein IF8 was determined by High-performance liquid chromatography (HPLC) and liquid chromatography electrospray ionization-mass spectroscopy (LC-ESI-MS) for the analysis of its molecular mass weight and purity. Further Matrix-assisted laser desorption ionization-time of flight (MALDI-TOFF) analysis confirmed the presence of toxic metabolites in liquid culture. Subsequently, mycotoxic effect of toxic protein IF8 was tested against D. citri at three different concentrations (1%, 2%, and 3%). The results showed the insecticidal activity of >80% when administered at three different concentrations at 48-120 hour post-application. Additionally, we also investigated the physicochemical properties and stability of IF8 by using computational biological tools. This is the first study to report the characterization of fungal mediated synthesis of the protein IF8 toxic to the insect D. citri. These results suggest the mycotoxin control of D. citri and prevention of HLB transmission by using a natural toxic compound which is eco-friendly and can be potentially used for the integrated management of D. citri.


Subject(s)
Ascomycota/metabolism , Hemiptera/drug effects , Insecticides/pharmacology , Mycotoxins/biosynthesis , Mycotoxins/pharmacology , Animals , Chemical Phenomena , Fermentation , Insecticides/chemistry , Insecticides/isolation & purification , Liquid-Liquid Extraction , Metabolome , Metabolomics/methods , Models, Molecular , Molecular Weight , Mycotoxins/chemistry , Mycotoxins/isolation & purification , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...