Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(586)2021 03 24.
Article in English | MEDLINE | ID: mdl-33762439

ABSTRACT

Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.


Subject(s)
Bacteremia , Pharmaceutical Preparations , Staphylococcal Infections , Animals , Bacteremia/drug therapy , Blood Platelets , Humans , Mice , Staphylococcal Infections/drug therapy , Staphylococcus aureus
2.
PLoS Pathog ; 13(9): e1006603, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28945820

ABSTRACT

Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.


Subject(s)
Antigens, Bacterial/pharmacology , Bacterial Toxins/pharmacology , Edema/metabolism , Endosomes/drug effects , Intercellular Junctions/drug effects , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Adenylyl Cyclases/metabolism , Animals , Cadherins/metabolism , Cell Line , Endosomes/metabolism , Intercellular Junctions/metabolism , Protein Transport/drug effects , rab GTP-Binding Proteins/metabolism
3.
ChemMedChem ; 9(9): 2164-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25055981

ABSTRACT

Semisynthetic derivatives of the clinically useful aminoglycosides tobramycin and amikacin were prepared by selectively modifying their 6'' positions with a variety of hydrogen bond donors and acceptors. Their binding to the rRNA A-site was probed using an in vitro FRET-based assay, and their antibacterial activities against several resistant strains (e.g., Pseudomonas aeruginosa, Klebsiella pneumonia, MRSA) were quantified by determining minimum inhibitory concentrations (MICs). The most potent derivatives were evaluated for their eukaryotic cytotoxicity. Most analogues displayed higher affinity for the bacterial A-site than the parent compounds. Although most tobramycin analogues exhibited no improvement in antibacterial activity, several amikacin analogues showed potent and broad-spectrum antibacterial activity against resistant bacteria. Derivatives tested for eukaryotic cytotoxicity exhibited minimal toxicity, similar to the parent compounds.


Subject(s)
Amikacin/analogs & derivatives , Amikacin/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , RNA, Ribosomal, 16S/drug effects , Tobramycin/analogs & derivatives , Tobramycin/chemical synthesis , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Antibiotics, Antineoplastic/chemical synthesis , Antibiotics, Antineoplastic/pharmacology , Binding Sites , Cell Survival/drug effects , Models, Molecular , Molecular Conformation , Tobramycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...