Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 883: 147683, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37536400

ABSTRACT

Sestrins (SESNs) are a family of evolutionarily conserved proteins among mammals. They have several body homeostatic functions such as antioxidant, metabolic, and anti-aging, and are required to regenerate hyperoxidized forms of peroxiredoxins and reactive oxygen species. Sestrin 2 has been studied as a therapeutic agent in obesity treatment. Gallic acid (GA) is a triphenolic compound with beneficial biological activities including anti-inflammatory, antidiabetic, antihypertensive, and antioxidant effects. Recent studies demonstrated the GA's ability to reduce body weight gain and improve glycemic parameters. In this sense, the present study aims to investigate the GA activating potential of Sestrin using the molecular docking method. The 3D structure of gallic acid was retrieved from the NCBI PubChem database and the chemical structure of the Sestrin2 protein from the RCSB Protein Data Bank (5DJ4). The docking calculus was performed via UCSF Chimera and AutoDock Vinaprograms. The results showed that amino acids Arg390, Glu451, Trp444, Thr386, Arg448, Thr374, Tyr375, Asn376, Thr377, Leu389, His454, Ser450, His86, and Val455 are very important for GA stabilization, resembling the interactions that permit Leucine to activate SESN2. In this context, the obesity therapeutic property of GA can be understood from a Sestrin activating process through amino acid metabolism.


Subject(s)
Gallic Acid , Sestrins , Animals , Molecular Docking Simulation , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Obesity/drug therapy , Antioxidants , Mammals
2.
Plant Foods Hum Nutr ; 78(2): 342-350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37120677

ABSTRACT

Hibiscus sabdariffa L. is a worldwide component for tea and beverages, being a natural source of anthocyanins, which are associated with cardiovascular activities. To investigate this relationship, we explored different methods of aqueous extraction on the anthocyanin content and antioxidant activity of H. sabdariffa L. calyx extract (HSCE). Pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotide levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239, and on the vasomotor response of aortic rings isolated from mice are studied herewith. We found that the application of ultrasonic turbolization, 20 min, combined with acidified water was significantly more effective in the extraction process, providing extracts with the highest levels of anthocyanins (8.73 and 9.63 mg/100 g) and higher antioxidant activity (6.66 and 6.78 µM trolox/g of sample). HSCE significantly inhibited (100-1000 µg/mL) arachidonic acid-induced platelet aggregation, reduced calcium mobilization, and increased cAMP and cGMP levels with VASPSer157 and VASPSer239 phosphorylation. Vasorelaxation reduction was confirmed by the aortic rings and endothelium assays treated with nitric oxide synthase inhibitors, soluble guanylyl cyclase (sGC) oxidizing agent, or Ca2+-activated K+ channel inhibitor. The increasing of cGMP levels could be understood considering the sGC stimulation by HSCE compounds in the specific stimulus domain, which allows an understanding of the observed antiplatelet and vasorelaxant properties of H. sabdariffa L. calyx extract.


Subject(s)
Hibiscus , Vasodilator Agents , Animals , Mice , Vasodilator Agents/pharmacology , Anthocyanins/pharmacology , Antioxidants/pharmacology , Calcium , Plant Extracts/pharmacology , Cyclic GMP/metabolism
3.
Rapid Commun Mass Spectrom ; 26(3): 377-84, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22223326

ABSTRACT

Sodium adducts of six organosulfur-α,ω-ditetrazole compounds (Tz-(CH(2))(n)-S(O)(m)-(CH(2))(n)-Tz; where Tz = tetrazole ring; n = 2, 3; m = 0, 1, 2) were generated via electrospray ionization (ESI) and their fragmentation pattern assessed via collision-induced dissociation (CID). Two main dissociation channels were observed: (a) losses of N(2) and HN(3) from the tetrazole rings; (b) cleavage of the C-S bond. The sulfoxides pass predominantly through the second fragmentation pathway, but for the sulfides and sulfones the tetrazole ring fragmentation occurs. Theoretical calculations at the B3LYP/6-31 + G(d,p) level indicate that for all the adducts (sulfide, sulfoxide, and sulfone) the dissociation pathway that leads to product ions arising from loss of N(2) was the most exothermic. Based on these results and assumptions, it was postulated that the dissociation of the sulfoxide adducts occurs under kinetic control (N(2)-loss pathway via a much more energetic transition state). For the sulfide and sulfone adducts, on the other hand, the dissociation process takes place via a thermodynamically controlled process.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/methods , Sulfur Compounds/chemistry , Sulfur/chemistry , Tetrazoles/chemistry , Ions/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...