Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Chem Neuroanat ; 59-60: 36-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24956196

ABSTRACT

Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibres containing non-opioid peptides (adrenocorticotropin hormone (ACTH), alpha-melanocyte-stimulating hormone) and opioid peptides (beta-endorphin (1-27), alpha-neo-endorphin, leucine-enkephalin) in the alpaca diencephalon. No immunoreactive cell bodies containing ACTH were found. Perikarya containing the other four peptides were observed exclusively in the hypothalamus and their distribution was restricted. Perikarya containing alpha-melanocyte-stimulating hormone or alpha-neo-endorphin showed a more widespread distribution than those containing leucine-enkephalin or beta-endorphin (1-27). Cell bodies containing pro-opiomelanocortin-derived peptides were observed in the arcuate nucleus, anterior and lateral hypothalamic areas and in the ventromedial and supraoptic hypothalamic nuclei, whereas perikarya containing alpha-neo-endorphin (a pro-dynorphin-derived peptide) were found in the arcuate nucleus, dorsal and lateral hypothalamic areas, and in the paraventricular, ventromedial and supraoptic hypothalamic nuclei. Immunoreactive cell bodies containing leucine-enkephalin were found in the lateral hypothalamic area and in the paraventricular hypothalamic nucleus. Immunoreactive fibres expressing pro-opiomelanocortin-derived peptides were more numerous than those expressing pro-dynorphin-derived peptides. A close anatomical relationship was observed: in all the diencephalic nuclei in which beta-endorphin (1-27)-immunoreactive fibres were found, fibres containing alpha-melanocyte-stimulating hormone or alpha-neo-endorphin were also observed. Fibres containing beta-endorphin (1-27), alpha-melanocyte-stimulating hormone or alpha-neo-endorphin were widely distributed throughout the diencephalon, but fibres containing ACTH or leucine-enkephalin showed a moderate distribution. The distribution of the five peptides studied here is also compared with that reported previously in other mammalian species. The widespread distribution observed indicates that both the pro-dynorphin and the pro-opiomelanocortin systems are involved in multiple physiological actions (e.g., food intake, thermoregulation, neuroendocrine and reproductive mechanisms) in the alpaca diencephalon.


Subject(s)
Brain Chemistry , Diencephalon , Enkephalins/analysis , Pro-Opiomelanocortin/analysis , Protein Precursors/analysis , Animals , Camelids, New World , Enkephalins/metabolism , Immunohistochemistry , Male , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Protein Precursors/metabolism
2.
Anat Histol Embryol ; 43(4): 245-56, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23692174

ABSTRACT

We studied the distribution of cell bodies and fibres containing neurotensin (NT) in the brainstem of the alpaca using an indirect immunoperoxidase technique. Immunoreactive fibres were widely distributed throughout the brainstem, whereas the distribution of cell bodies was less widespread. Immunoreactive perikarya were only found in the mesencephalic and bulbar reticular formation, periaqueductal grey, nucleus of the solitary tract, laminar spinal trigeminal nucleus and in the inferior colliculus. A high density of fibres containing NT was found in the dorsal nucleus of the raphe, marginal nucleus of the brachium conjunctivum, locus coeruleus, inferior colliculus, inter-peduncular nucleus, substantia nigra, periaqueductal grey, reticular formation of the mesencephalon, pons and medulla oblongata, nucleus of the solitary tract, laminar spinal trigeminal nucleus, hypoglossal nucleus, inferior central nucleus and in the tegmental reticular nucleus. The widespread distribution indicates that NT might be involved in multiple physiological actions in the alpaca brainstem; this must be investigated in the future as alpacas lives from 0 m above sea level to altitudes of up 5000 m and hence the involvement of this neuropeptide in special and unique regulatory physiological mechanisms could be suggested.


Subject(s)
Brain Stem/metabolism , Camelids, New World/metabolism , Neurotensin/metabolism , Animals , Cell Body , Male , Nerve Fibers , Tissue Distribution
3.
J Chem Neuroanat ; 50-51: 66-74, 2013 May.
Article in English | MEDLINE | ID: mdl-23474224

ABSTRACT

Based on previous work describing the distribution of somatostatin-28 (1-12) in the male alpaca (Lama pacos) diencephalon, and owing to the well known interactions between this peptide and the catecholaminergic system, the aims of this work are (1) to describe the distribution of putative catecholaminergic cell groups in the alpaca diencephalon and (2) to study the possible morphological basis of the interactions between these substances in the diencephalon of the alpaca by using double immunohistochemistry methods. Thus, the distribution of catecholaminergic cell groups in the alpaca diencephalon agrees with that previously described in the diencephalon of other mammalian species of the same order: the A11, A12, A13, A14 and A15d cell groups have been identified; however, we have observed an additional hitherto undescribed cell group containing tyrosine hydroxylase in the medial habenula. In addition, double-labelling procedures did not reveal neurons containing tyrosine hydroxylase and somatostatin, suggesting that the hypothalamic interactions between catecholamines and somatostatin at intra-cellular level must be carried out by a somatostatin molecule other than fragment (1-12). Otherwise, the overlapping distribution patterns of these substances would suggest some interconnections between groups of chemospecific neurons. These results could be the starting point for future studies on hypothalamic functions in alpacas, for example those concerning reproductive control, since other physiological studies have suggested that this species could have different regulatory mechanisms from other mammalian species. Our results support the Manger hypothesis that the same nuclear complement of neural systems exists in the brain of species of the same order.


Subject(s)
Camelids, New World/metabolism , Diencephalon/metabolism , Neurons/metabolism , Peptide Fragments/analysis , Somatostatin-28/analysis , Tyrosine 3-Monooxygenase/analysis , Animals , Immunohistochemistry , Male , Peptide Fragments/biosynthesis , Somatostatin-28/biosynthesis , Tyrosine 3-Monooxygenase/biosynthesis
4.
J Chem Neuroanat ; 45(1-2): 36-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22922318

ABSTRACT

We report the distribution of immunoreactive cell bodies and fibers containing calcitonin gene-related peptide in the alpaca diencephalon. This study was carried out in alpacas that lived from birth to death at 0 m above sea level. Immunoreactive fibers were widely distributed throughout the thalamus and hypothalamus. A moderate density of these fibers was found in the zona incerta, the central medial, subparafascicular, reuniens and rhomboid thalamic nuclei, in the preoptic, anterior, lateral and dorsal hypothalamic areas, around the fornix, in the posterior, ventromedial and paraventricular hypothalamic nuclei and in the lateral mammillary nucleus. Cell bodies were only found in the hypothalamus: a high density in the paraventricular and supraoptic hypothalamic nuclei and a low density in the anterior, lateral and dorsal hypothalamic areas, around the fornix, and in the posterior and ventromedial hypothalamic nuclei. The widespread distribution of calcitonin gene-related peptide in the alpaca diencephalon suggests that it is involved in many physiological actions that must be investigated in-depth in the future, since alpacas lives from 0 m above sea level to altitudes of up to 5000 m altitude and hence the involvement of neuropeptides in special and unique regulatory physiological mechanisms could be suggested.


Subject(s)
Calcitonin Gene-Related Peptide/analysis , Calcitonin Gene-Related Peptide/blood , Camelids, New World/metabolism , Diencephalon/metabolism , Animals , Immunohistochemistry , Male
5.
J Chem Neuroanat ; 42(1): 89-98, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21729751

ABSTRACT

Using an immunocytochemical technique, we report for the first time the distribution of immunoreactive cell bodies and fibers containing somatostatin-28 (1-12) in the alpaca diencephalon. Somatostatin-28 (1-12)-immunoreactive cell bodies were only observed in the hypothalamus (lateral hypothalamic area, arcuate nucleus and ventromedial hypothalamic nucleus). However, immunoreactive fibers were widely distributed throughout the thalamus and hypothalamus. A high density of such fibers was observed in the central medial thalamic nucleus, laterodorsal thalamic nucleus, lateral habenular nucleus, mediodorsal thalamic nucleus, paraventricular thalamic nucleus, reuniens thalamic nucleus, rhomboid thalamic nucleus, subparafascicular thalamic nucleus, anterior hypothalamic area, arcuate nucleus, dorsal hypothalamic area, around the fornix, lateral hypothalamic area, lateral mammilary nucleus, posterior hypothalamic nucleus, paraventricular hypothalamic nucleus, suprachiasmatic nucleus, supraoptic hypothalamic nucleus, and in the ventromedial hypothalamic nucleus. The widespread distribution of somatostatin-28 (1-12) in the thalamus and hypothalamus of the alpaca suggests that the neuropeptide could be involved in many physiological actions.


Subject(s)
Camelids, New World/metabolism , Diencephalon/metabolism , Peptide Fragments/metabolism , Somatostatin-28/metabolism , Animals , Immunohistochemistry , Male , Peptide Fragments/analysis , Somatostatin-28/analysis
6.
J Chem Neuroanat ; 41(2): 63-72, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21050884

ABSTRACT

The distribution of tyrosine hydroxylase (TH) in the brainstem of alpaca (Lama pacos) has been analysed using immunohistochemical methods. The following catecholaminergic cell nuclei have been detected: A1, C1, A2, C2 and area postrema in the medulla oblongata; A5, A6d, A7sc and A7d in the pons; as have several mesencephalic groups: A8, A9l, A9m, A9v, A9pc, A10, A10c, A10d and A10dc. This nuclear parcellation differs from that found in rodents, but agrees with the results reported in other members of the Artiodactyla order, such as giraffe or pig, and with the catecholaminergic distribution detected in species of other mammalian orders. Thus, these findings support the hypothesis that the animals included in the same order show the same nuclear complement in the neuromodulatory systems. In addition, it seems that other species share the same catecholaminergic groups as the alpaca, suggesting that a specific nuclear disposition was important and worth maintaining throughout evolution. Moreover, the distribution of TH has been compared with that of CGRP by double immunohistochemistry. Double-labelled neurons were very isolated and observed only in a few catecholaminergic groups: A1 and C2 in the medulla oblongata, A6d, A7sc and A7d in the pons, and A9l in the mesencephalon. However, interaction between TH and CGRP may be possible in more brainstem regions, particularly the area postrema. This interaction may prove important in the regulation of the specific cardiovascular control of alpacas given their morphological characteristics.


Subject(s)
Area Postrema/metabolism , Calcitonin Gene-Related Peptide/metabolism , Tyrosine 3-Monooxygenase/metabolism , Animals , Brain Mapping , Camelids, New World , Catecholamines/metabolism , Cell Nucleus/metabolism , Immunohistochemistry , Male , Mesencephalon/metabolism , Neurons/cytology , Neurons/metabolism , Phylogeny , Pons/metabolism , Species Specificity
7.
Neuroscience ; 144(2): 654-64, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17084987

ABSTRACT

Using highly specific antisera directed against conjugated d-amino acids, the distribution of d-glutamate-, d-tryptophan-, d-cysteine-, d-tyrosine- and d-methionine-immunoreactive structures in the rat brain was studied. Cell bodies containing d-glutamate, but not d-glutamate-immunoreactive fibers, were found. Perikarya containing this d-amino acid were only found in the mesencephalon and thalamus of the rat CNS. Thus, the highest density of cell bodies containing d-glutamate was observed in the dorsal raphe nucleus, the ventral part of the mesencephalic central gray, the superior colliculus, above the posterior commissure, and in the subparafascicular thalamic nucleus. A moderate density of immunoreactive cell bodies was observed in the dorsal part of the mesencephalic central gray, above the rostral linear nucleus of the raphe, the nucleus of Darkschewitsch, and in the medial habenular nucleus, whereas a low density was found below the medial forebrain bundle and in the posterior thalamic nuclear group. Moreover, no immunoreactive fibers or cell bodies were visualized containing d-tryptophan, d-cysteine, d-tyrosine or d-methionine in the rat brain. The distribution of d-glutamate-immunoreactive cell bodies in the rat brain suggests that this d-amino acid could be involved in several physiological mechanisms. This work reports the first visualization and the morphological characteristics of conjugated d-glutamate-immunoreactive cell bodies in the rat CNS using an indirect immunoperoxidase technique. Our results suggest that the immunoreactive neurons observed have an uptake mechanism for d-glutamate.


Subject(s)
Brain/metabolism , Glutamic Acid/metabolism , Immunochemistry , Animals , Brain/cytology , Brain Mapping , Enzyme-Linked Immunosorbent Assay/methods , Male , Neurons/cytology , Neurons/metabolism , Rats , Rats, Sprague-Dawley
8.
Neuroscience ; 136(3): 907-25, 2005.
Article in English | MEDLINE | ID: mdl-16344160

ABSTRACT

Both GABA and glycine (Gly) containing neurons send inhibitory projections to the inferior colliculus (IC), whereas inhibitory neurons within the IC are primarily GABAergic. To date, however, a quantitative description of the topographic distribution of GABAergic neurons in the rat's IC and their GABAergic or glycinergic inputs is lacking. Accordingly, here we present detailed maps of GABAergic and glycinergic neurons and terminals in the rat's IC. Semithin serial sections of the IC were obtained and stained for GABA and Gly. Images of the tissue were digitized and used for a quantitative densitometric analysis of GABA immunostaining. The optical density, perimeter, and number of GABA- and Gly immunoreactive boutons apposed to the somata were measured. Data analysis included comparisons across IC subdivisions and across frequency regions within the central nucleus of the IC. The results show that: 1) 25% of the IC neurons are GABAergic; 2) there are more GABAergic neurons in the central nucleus of the IC than previously estimated; 3) GABAergic neurons are larger than non-GABAergic; 4) GABAergic neurons receive less GABA and glycine puncta than non-GABAergic; 5) differences across frequency regions are minor, except that the non-GABAergic neurons from high frequency regions are larger than their counterparts in low frequency regions; 6) differences within the laminae are greater along the dorsomedial-ventrolateral axis than along the rostrocaudal axis; 7) GABA and non-GABAergic neurons receive different numbers of puncta in different IC subdivisions; and 8) GABAergic puncta are both apposed to the somata and in the neuropil, glycinergic puncta are mostly confined to the neuropil.


Subject(s)
Glycine/metabolism , Inferior Colliculi/cytology , Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Brain Mapping , Cell Count/methods , Female , Immunohistochemistry/methods , Inferior Colliculi/metabolism , Male , Microscopy, Electron, Scanning/methods , Models, Anatomic , Neurons/classification , Neurons/ultrastructure , Rats , Rats, Wistar
9.
Anat Embryol (Berl) ; 210(2): 133-43, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16133591

ABSTRACT

We studied the distribution of neurokinin B-immunoreactive cell bodies and fibers in the cat brainstem using an indirect immunoperoxidase technique. The highest density of immunoreactive fibers was found in the motor trigeminal nucleus, the laminar and alaminar spinal trigeminal nuclei, the facial nucleus, the marginal nucleus of the brachium conjunctivum, the locus coeruleus, the cuneiform nucleus, the dorsal motor nucleus of the vagus, the postpyramidal nucleus of the raphe, the lateral tegmental field, the Kölliker-Fuse nucleus, the inferior central nucleus, the periaqueductal gray, the nucleus of the solitary tract, and in the inferior vestibular nucleus. Immunoreactive cell bodies containing neurokinin B were observed, for example, in the locus coeruleus, the dorsal motor nucleus of the vagus, the median division of the dorsal nucleus of the raphe, the lateral tegmental field, the pericentral nucleus of the inferior colliculus, the internal division of the lateral reticular nucleus, the inferior central nucleus, the periaqueductal gray, the postpyramidal nucleus of the raphe, and in the medial nucleus of the solitary tract. This widespread distribution of neurokinin B in the cat brainstem suggests that the neuropeptide could be involved in many different physiological functions. In comparison with previous studies carried out in the rat brainstem on the distribution of neurokinin B, our results point to a more widespread distribution of this neuropeptide in the cat brainstem.


Subject(s)
Brain Stem/chemistry , Neurokinin B/analysis , Animals , Cats , Immunoenzyme Techniques , Male
10.
Neuroscience ; 128(4): 843-59, 2004.
Article in English | MEDLINE | ID: mdl-15464291

ABSTRACT

Using an indirect immunoperoxidase technique, we studied the distribution of immunoreactive fibers and cell bodies containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) in the adult human brainstem. Immunoreactive cell bodies were found in the reticular formation of the medulla oblongata (in which we observed the highest density of immunoreactive cell bodies) and the pons, the solitary nucleus, the hypoglossal nucleus, the medial and spinal vestibular nuclei, the lateral cuneate nucleus, the nucleus prepositus, the central gray of the pons and mesencephalon, the central and pericentral nuclei of the inferior colliculus, the superior colliculus, ventral to the superior olive and in the midline region of the pons and mesencephalon. The highest density of immunoreactive fibers containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) was found in the spinal trigeminal nucleus, the central gray and the reticular formation of the medulla oblongata, pons and mesencephalon, the solitary nucleus, the spinal vestibular nucleus, the dorsal accessory olivary nucleus, the raphe obscurus, the substantia nigra and in the interpeduncular nucleus. The widespread distribution of immunoreactive structures containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) in the human brainstem indicates that this neuropeptide might be involved in several physiological mechanisms, acting as a neurotransmitter and/or neuromodulator.


Subject(s)
Brain Stem/metabolism , Enkephalin, Methionine/analogs & derivatives , Enkephalin, Methionine/metabolism , Aged , Aged, 80 and over , Brain Mapping/methods , Brain Stem/cytology , Female , Humans , Immunoenzyme Techniques/methods , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...