Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716731

ABSTRACT

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Uganda , Adult , Male , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Female , Tuberculosis/immunology , Tuberculosis/microbiology , T-Lymphocytes/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Clone Cells/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Young Adult , Histocompatibility Antigens Class I
2.
Elife ; 122023 10 25.
Article in English | MEDLINE | ID: mdl-37877801

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.


Subject(s)
Mycobacterium tuberculosis , Nanoparticles , Humans , Animals , Mice , Cell Differentiation , Vaccination , Mycolic Acids
3.
bioRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-36945395

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection elicits both protein and lipid antigen-specific T cell responses. However, the incorporation of lipid antigens into subunit vaccine strategies and formulations has been underexplored, and the characteristics of vaccine-induced Mtb lipid-specific memory T cells have remained elusive. Mycolic acid (MA), a major lipid component of the Mtb cell wall, is presented by human CD1b molecules to unconventional T cell subsets. These MA-specific CD1b-restricted T cells have been detected in the blood and disease sites of Mtb-infected individuals, suggesting that MA is a promising lipid antigen for incorporation into multicomponent subunit vaccines. In this study, we utilized the enhanced stability of bicontinuous nanospheres (BCN) to efficiently encapsulate MA for in vivo delivery to MA-specific T cells, both alone and in combination with an immunodominant Mtb protein antigen (Ag85B). Pulmonary administration of MA-loaded BCN (MA-BCN) elicited MA-specific T cell responses in humanized CD1 transgenic mice. Simultaneous delivery of MA and Ag85B within BCN activated both MA- and Ag85B-specific T cells. Notably, pulmonary vaccination with MA-Ag85B-BCN resulted in the persistence of MA, but not Ag85B, within alveolar macrophages in the lung. Vaccination of MA-BCN through intravenous or subcutaneous route, or with attenuated Mtb likewise reproduced MA persistence. Moreover, MA-specific T cells in MA-BCN-vaccinated mice differentiated into a T follicular helper-like phenotype. Overall, the BCN platform allows for the dual encapsulation and in vivo activation of lipid and protein antigen-specific T cells and leads to persistent lipid depots that could offer long-lasting immune responses.

4.
J Immunol ; 210(9): 1236-1246, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36961450

ABSTRACT

mRNA vaccination of individuals with prior SARS-CoV-2 infection provides superior protection against breakthrough infections with variants of concern compared with vaccination in the absence of prior infection. However, the immune mechanisms by which this hybrid immunity is generated and maintained are unknown. Whereas genetic variation in spike glycoprotein effectively subverts neutralizing Abs, spike-specific T cells are generally maintained against SARS-CoV-2 variants. Thus, we comprehensively profiled human T cell responses against the S1 and S2 domains of spike glycoprotein in a cohort of SARS-CoV-2-naive (n = 13) or -convalescent (n = 17) individuals who received two-dose mRNA vaccine series and were matched by age, sex, and vaccine type. Using flow cytometry, we observed that the overall functional breadth of CD4 T cells and polyfunctional Th1 responses was similar between the two groups. However, polyfunctional cytotoxic CD4 T cell responses against both S1 and S2 domains trended higher among convalescent subjects. Multimodal single-cell RNA sequencing revealed diverse functional programs in spike-specific CD4 and CD8 T cells in both groups. However, convalescent individuals displayed enhanced cytotoxic and antiviral CD8 T cell responses to both S1 and S2 in the absence of cytokine production. Taken together, our data suggest that cytotoxic CD4 and CD8 T cells targeting spike glycoprotein may partially account for hybrid immunity and protection against breakthrough infections with SARS-CoV-2.


Subject(s)
COVID-19 , T-Lymphocytes, Cytotoxic , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Breakthrough Infections , RNA, Messenger , Vaccination , Adaptive Immunity , Glycoproteins , Antibodies, Viral , Antibodies, Neutralizing
5.
Disabil Rehabil Assist Technol ; 18(3): 274-284, 2023 04.
Article in English | MEDLINE | ID: mdl-33156714

ABSTRACT

BACKGROUND: Social participation is an important aspect of health and well-being across the lifespan, but older adults might encounter some barriers, which has been highlighted in the current Covid-19 pandemic situation, where technology has become the primary way to maintain contact with family and friends. In fact, technology can serve both as a facilitator and barrier to social participation in later life, and this issue needs to be further understood. AIM: To identify the barriers and facilitators encountered by older adults in using technology to promote social participation. METHODS: A systematic review was conducted. Studies were included if they were peer-reviewed, written in English or French, included participants 50 years or older, included technology to promote social participation, and reported potential barriers or facilitators regarding such technologies. Four databases were included: MEDLINE, CINAHL, PsychINFO and, ERIC. Each study was reviewed by two independent reviewers. The quality of the study was appraised using the Crowe Critical Appraisal Tool. RESULTS: Seventeen studies were included in this report. Four main themes emerged from the data: perceived benefits of the technology, self-confidence and knowledge about using the technology efficiently and safely, affordability of the technology, and ability of the technology to adapt to the physical and cognitive declines in later life. CONCLUSION: These findings can help health care professionals to make better decisions when deciding to recommend technology for their older clients.IMPLICATIONS FOR REHABILITATIONAcceptance of technology to promote social participation in later life is a multi-complex process. There is no "one size fits all" approach, a person-centered intervention must be used.When introducing new technologies, using an adapted/tailored training approach could potentially increase self-efficacy in using technology.Rehabilitation professionals' misconceptions concerning the use of technology in later life can be a barrier to acceptance. It's important to be aware of our own believes and attitudes in this context.


Subject(s)
COVID-19 , Pandemics , Humans , Aged , Social Participation , Health Personnel/psychology
6.
Eur J Pharm Sci ; 175: 106219, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35618200

ABSTRACT

OBJECTIVE: The aim of this study was to characterize the population pharmacokinetics of amikacin in elderly patients by means of nonlinear mixed effects modelling and to propose initial dosing schemes to optimize therapy based on PK/PD targets. METHOD: A total of 137 elderly patients from 65 to 94 years receiving intravenous amikacin and routine therapeutic drug monitoring at Hospital Universitario Severo Ochoa were included. Concentration-time data and clinical information were retrospectively collected; initial doses of amikacin ranged from 5.7 to 22.5 mg/kg/day and each patient provided between 1 and 10 samples. RESULTS: Amikacin pharmacokinetics were best described by a two-compartment open model; creatinine clearance (CrCL) was related to drug clearance (2.75 L/h/80 mL/min) and it was augmented 28% when non-steroidal anti-inflammatory drugs were concomitantly administered. Body mass index (BMI) influenced the central volume of distribution (17.4 L/25 kg/m2). Relative absolute prediction error was reduced from 33.2% (base model) to 17.9% (final model) when predictive performance was evaluated with a different group of elderly patients. A nomogram for initial amikacin dosage was developed and evaluated based on stochastic simulations considering final model to achieve PK/PD targets (Cmax/MIC>10 and AUC/MIC>75) and to avoid toxic threshold (Cmin<2.5 mg/L). CONCLUSION: Initial dosing approach for amikacin was designed for elderly patients based on nonlinear mixed effects modeling to maximize the probability to attain efficacy and safety targets considering individual BMI and CrCL.


Subject(s)
Amikacin , Anti-Bacterial Agents , Administration, Intravenous , Aged , Humans , Metabolic Clearance Rate , Retrospective Studies
7.
New Phytol ; 234(6): 2126-2139, 2022 06.
Article in English | MEDLINE | ID: mdl-35274744

ABSTRACT

The discovery and characterization of plant species adapted to extreme environmental conditions have become increasingly important. Hoffmannseggia doellii is a perennial herb endemic to the Chilean Atacama Desert that grows in the western Andes between 2800 and 3600 m above sea level. Its growing habitat is characterized by high radiation and low water and nutrient availability. Under these conditions, H. doellii can grow, reproduce, and develop an edible tuberous root. We characterized the H. doellii soil-associated microbiomes to understand the biotic factors that could influence their surprising ability to survive. We found an increased number of observed species and higher phylogenetic diversity of bacteria and fungi on H. doellii root soils compared with bare soil (BS) along different sites and to soil microbiomes of other plant species. Also, the H. doellii-associated microbiome had a higher incidence of overall positive interactions and fungal within-kingdom interactions than their corresponding BS network. These findings suggest a microbial diversity soil modulation mechanism that may be a characteristic of highly tolerant plants to diverse and extreme environments. Furthermore, since H. doellii is related to important cultivated crops, our results create an opportunity for future studies on climate change adaptation of crop plants.


Subject(s)
Microbiota , Soil Microbiology , Desert Climate , Phylogeny , Plants , Soil
8.
Nat Commun ; 13(1): 78, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013257

ABSTRACT

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Subject(s)
Antigens, CD1/immunology , Glycolipids/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Antigens, CD1/genetics , CD3 Complex/genetics , CD3 Complex/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cytotoxicity, Immunologic , Gene Expression , Glycolipids/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Lymphocyte Activation , Mycobacterium tuberculosis/growth & development , Primary Cell Culture , Protein Binding , Protein Multimerization , Transduction, Genetic , Tuberculosis/genetics , Tuberculosis/microbiology
9.
J Pharm Sci ; 110(10): 3520-3526, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34089712

ABSTRACT

Meropenem pharmacokinetics in neonates exhibits large interindividual variability due to developmental changes occurring during the first month of life. The objective was to characterize meropenem pharmacokinetics through a population approach to determine effective dosing recommendations in neonates with severe nosocomial infections. Three blood samples from forty neonates were obtained once steady-state blood levels were achieved and plasma concentrations were determined with a validated chromatographic method. Data were used to develop and validate the one-compartment with first-order elimination population pharmacokinetic model obtained by non-linear mixed effect modeling. The final model was Clearance (L/h) = 2.23 × Creatinine Clearance (L/h) and Volume of distribution(L) = 6.06 × Body Surface Area(m2) × (1 + 0.60 if Fluticasone comedication). Doses should be adjusted based on said covariates to increase the likelihood of achieving therapeutic targets. This model explains 12.9% of the interindividual variability for meropenem clearance and 19.1% for volume of distribution. Stochastic simulations to establish initial dosing regimens to maximize the time above the MIC showed that the mean probabilities to achieve the PK/PD target (PTA) for microorganisms with a MIC of 2 and 8 µg/mL were 0.8 and 0.7 following i.v. bolus of 250 and 500 mg/m2/dose q8h, respectively. Meropenem extended 4h infusion would improve PTA in neonates with augmented creatinine clearance.


Subject(s)
Cross Infection , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Humans , Infant, Newborn , Meropenem , Microbial Sensitivity Tests , Monte Carlo Method
10.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33621211

ABSTRACT

Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multiparameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n = 20) or not hospitalized (n = 40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4+ T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4+ T cells and antibodies targeting the S1 domain of spike among subjects who were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2, which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19.


Subject(s)
Antibodies, Viral/physiology , CD4-Positive T-Lymphocytes/physiology , COVID-19/virology , Hospitalization , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Virion , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/physiology , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes/metabolism , COVID-19/epidemiology , COVID-19/immunology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/immunology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Nucleocapsid , Severity of Illness Index , Viral Envelope , Viral Proteins , Young Adult
11.
medRxiv ; 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33269369

ABSTRACT

Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multi-parameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n=20) or not hospitalized (n=40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4 T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4 T-cells and antibodies targeting the S1 domain of spike among subjects that were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2 which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19. Our data suggest that isolated measurements of the magnitudes of spike-specific immune responses are likely insufficient to anticipate vaccine efficacy in high-risk populations.

12.
Lupus ; 29(9): 1067-1077, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32539658

ABSTRACT

BACKGROUND: Mycophenolic acid (MPA) is an effective oral immunosuppressive drug used to treat lupus nephritis (LN), which exhibits large pharmacokinetic variability. This study aimed to characterize MPA pharmacokinetic behaviour in Mexican LN patients and to develop a population pharmacokinetic model which identified factors that influence MPA pharmacokinetic variability. METHODS: Blood samples from LN patients treated with mycophenolate mofetil (MMF) were collected pre dose and up to six hours post dose. MPA concentrations were determined by a validated ultra-performance liquid chromatography tandem mass spectrometry technique. Patients were genotyped for polymorphisms in enzymes (UGT1A8, 1A9 and 2B7) and transporters (ABCC2 and SLCO1B3). The anthropometric, clinical, genetic and co-medication characteristics of each patient were considered as potential covariates to explain the variability. RESULTS: A total of 294 MPA concentrations from 40 LN patients were included in the development of the model. The data were analysed using NONMEM software and were best described by a two-compartment linear model. MPA CL, Vc, Vp, Ka and Q were 15.4 L/h, 22.86 L, 768 L, 1.28 h-1 and 20.3 L/h, respectively. Creatinine clearance and prednisone co-administration proved to have influence on clearance, while body weight influenced Vc. The model was internally validated, proving to be stable. MMF dosing guidelines were obtained through stochastic simulations performed with the final model. CONCLUSIONS: This is the first MPA population pharmacokinetic model to have found that co-administration of prednisone results in a considerable increase on clearance. Therefore, this and the other covariates should be taken into account when prescribing MMF in order to optimize the immunosuppressant therapy in patients with LN.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Lupus Nephritis/drug therapy , Models, Biological , Mycophenolic Acid/pharmacokinetics , Prednisone/pharmacokinetics , Adolescent , Adult , Drug Therapy, Combination , Female , Humans , Immunosuppressive Agents/administration & dosage , Linear Models , Lupus Nephritis/blood , Male , Mexico , Middle Aged , Multidrug Resistance-Associated Protein 2 , Mycophenolic Acid/administration & dosage , Prednisone/administration & dosage , Software , Young Adult
13.
Eur J Pharm Sci ; 150: 105370, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32387086

ABSTRACT

Mycophenolate mofetil (MMF) is typically used in combination with prednisone and tacrolimus to avoid graft rejection in kidney transplant patients. The aim of this study was to develop and validate a population pharmacokinetic model of mycophenolic acid (MPA) in kidney transplant patients to investigate the influence of clinical and genetic covariates and to propose a dosage regimen based on the final model. Adult kidney transplant patients (>18 years old) receiving combination of MMF, prednisone and tacrolimus regimen were included. The population pharmacokinetic model was built using a two-compartment model and First Order Conditional Estimation method with Interaction (FOCEI though NONMEM v.7.4.). A total of 343 MPA concentrations at steady state from 77 kidney transplant patients were included in the analysis. MPA CL/F, V1/F, Q/F, V2/F, and Ka were 12.4 L/h, 45.6 L, 29.9 L/h, 658 L, and 1.67 h-1, respectively. It was found that CL/F increases with serum creatinine and uric acid levels and V1/F is modified by blood urea nitrogen and the UGT1A9 genotype. In the final model the interindividual variabilities associated to CL/F and V1/F were 56.5% and 105.8%, respectively. The residual variability was 41.8%. Evaluation by bootstrapping showed that the final model was stable. The predictive performance was evaluated by goodness-of-fit plots and visual predictive check. Dosage regimens for MMF were proposed based on the final model and would be appropriate for a prospective evaluation. In conclusion, it was built a population pharmacokinetic model for MPA in kidney transplant patients, which include clinical and genetic covariates.


Subject(s)
Immunosuppressive Agents/pharmacokinetics , Kidney Transplantation , Models, Biological , Mycophenolic Acid/pharmacokinetics , Adolescent , Adult , Aged , Anti-Inflammatory Agents/therapeutic use , Blood Urea Nitrogen , Creatinine/blood , Drug Interactions , Drug Therapy, Combination , Female , Glucuronosyltransferase/genetics , Humans , Immunosuppressive Agents/blood , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Mycophenolic Acid/blood , Mycophenolic Acid/therapeutic use , Prednisone/therapeutic use , Tacrolimus/therapeutic use , UDP-Glucuronosyltransferase 1A9 , Uric Acid/blood , Young Adult
14.
Biomed Chromatogr ; 33(12): e4681, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31419321

ABSTRACT

To implement and validate an analytical method by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS) to quantify mycophenolic acid (MPA) in kidney transplant patients. Quantification of MPA was performed in an ACQUITY UPLC H Class system coupled to a Xevo TQD detector and it was extracted from plasma samples by protein precipitation. The chromatographic separation was achieved through an ACQUITY HSS C18 SB column with 0.1% formic acid and acetonitrile (60:40 vol/vol) as mobile phase. The pharmacokinetic parameters were calculated by non-compartmental analysis of MPA plasma concentrations from 10 kidney transplant patients. The linear range for MPA quantification was 0.2-30 mg/L with a limit of detection of 0.07 mg/L; the mean extraction recovery was 99.99%. The mean intra- and inter-day variability were 2.98% and 3.4% with a percentage of deviation of 8.4% and 6.6%, respectively. Mean maximal concentration of 10 mg/L at 1.5 h, area under the concentration-time curve of 36.8 mg·h/L, elimination half-life of 3.9 h, clearance of 0.32 L/h/kg and volume of distribution of 1.65 L/kg were obtained from MPA pharmacokinetics profiles. A simple, fast and reliable UPLC-MS/MS method to quantify MPA in plasma was validated and has been applied for pharmacokinetic analysis in kidney transplant patients.


Subject(s)
Chromatography, High Pressure Liquid/methods , Kidney Transplantation , Mycophenolic Acid/blood , Mycophenolic Acid/pharmacokinetics , Tandem Mass Spectrometry/methods , Adolescent , Adult , Female , Humans , Limit of Detection , Linear Models , Male , Mycophenolic Acid/chemistry , Reproducibility of Results , Transplant Recipients , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...