Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Cell ; 34(10): 3512-3542, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35976122

ABSTRACT

The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.


Subject(s)
Embryophyta , Marchantia , Biological Evolution , Germ Cells, Plant , Marchantia/genetics , Phylogeny
2.
New Phytol ; 223(2): 575-581, 2019 07.
Article in English | MEDLINE | ID: mdl-30920664

ABSTRACT

Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.


Subject(s)
DNA Methylation/genetics , Marchantia/genetics , DNA-Directed RNA Polymerases/metabolism , Marchantia/growth & development , Models, Biological , RNA, Plant/metabolism
3.
Plant Cell Physiol ; 59(12): 2421-2431, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30102384

ABSTRACT

DNA methylation is an epigenetic mark that ensures silencing of transposable elements (TEs) and affects gene expression in many organisms. The function of different DNA methylation regulatory pathways has been largely characterized in the model plant Arabidopsis thaliana. However, far less is known about DNA methylation regulation and functions in basal land plants. Here we focus on the liverwort Marchantia polymorpha, an emerging model species that represents a basal lineage of land plants. We identified MpMET, the M. polymorpha ortholog of the METHYLTRANSFERASE 1 (MET1) gene required for maintenance of methylation at CG sites in angiosperms. We generated Mpmet mutants using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) system, which showed a significant loss of CG methylation and severe morphological changes and developmental defects. The mutants developed many adventitious shoot-like structures, suggesting that MpMET is required for maintaining differentiated cellular identities in the gametophyte. Even though numerous TEs were up-regulated, non-CG methylation was generally highly increased at TEs in the Mpmet mutants. Closer inspection of CHG methylation revealed features unique to M. polymorpha. Methylation of CCG sites in M. polymorpha does not depend on MET1, unlike in A. thaliana and Physcomitrella patens. Our results highlight the diversity of non-CG methylation regulatory mechanisms in plants.


Subject(s)
Cell Division/genetics , CpG Islands/genetics , DNA Methylation/genetics , Marchantia/cytology , Marchantia/genetics , DNA Transposable Elements/genetics , Genome, Plant , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...