Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 94(1): 267-74, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26812333

ABSTRACT

Four Holstein steers with ruminal and duodenal cannulas were used in a 4 × 4 Latin square design to examine the effect of daily intake of 0, 2, 4 or 6 g/steer of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on the characteristics of ruminal fermentation and characteristics of digestion. The basal diet consisted of a steam-flaked corn-based finishing diet that contained 62% corn and 12% sudangrass hay and the rest of diet was composed of mainly dried distillers grains, molasses, fat, and minerals. The source of QBA+PA used was Sangrovit-RS (Phytobiotics Futterzusatzstoffe GmbH, Eltville, Germany) and supplementation levels of 2, 4, and 6 g Sangrovit-RS∙steer∙d, which represented a net daily ingestion of approximately 6, 12, and 18 mg of QBA+PA compounds, respectively. Inclusion of QBA+PA linearly increased ( = 0.04) flow to the duodenum of nonammonia N and linearly decreased ( < 0.01) duodenal flows of ammonia N. Ruminal microbial efficiency (duodenal microbial N; g/kg OM fermented in the rumen) and protein efficiency (duodenal nonammonia N; g/g N intake) were increased ( < 0.05) as the level of QBA+PA increased. There were no effects of QBA+PA supplementation on ruminal, postruminal, and total tract digestion of OM, starch, and NDF, but postruminal and total tract digestion of N increased ( < 0.01) as the level of QBA+PA increased. Digestible energy of the diet tended to increase (linear affect, = 0.09) with QBA+PA supplementation. Ruminal pH and total VFA molar concentrations were not different between treatments. Ruminal NH-N concentration linearly decreased ( = 0.02) with QBA+PA supplementation. Ruminal molar proportion of acetate increased ( = 0.04) as the supplementation level of QBA+PA increased. It is concluded that QBA+PA supplementation enhances efficiency of N utilization in feedlot steers fed a steam-flaked corn-based finishing diet. This effect was due, in part, to enhanced ruminal microbial efficiency, decreased ruminal degradation of dietary nonammonia N, and enhanced postruminal N digestion.


Subject(s)
Alkaloids/pharmacology , Animal Feed/analysis , Cattle/physiology , Digestion/drug effects , Isoquinolines/pharmacology , Rumen/drug effects , Alkaloids/administration & dosage , Alkaloids/chemistry , Ammonia/metabolism , Animals , Bacteria/metabolism , Diet/veterinary , Dietary Supplements , Fermentation , Gene Expression Regulation, Bacterial/drug effects , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Rumen/metabolism , Zea mays/chemistry
2.
Asian-Australas J Anim Sci ; 27(2): 187-93, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25049942

ABSTRACT

As a result of the cost of grains, the replacement of grains by co-products (i.e. DDGS) in feedlot diets is a common practice. This change produces diets that contain a lower amount of starch and greater amount of fibre. Hypothetically, combining feed grade urea (U) with slow release urea (Optigen) in this type of diet should elicit a better synchrony between starch (high-rate of digestion) and fibre (low-rate of digestion) promoting a better microbial protein synthesis and ruminal digestion with increasing the digestible energy of the diet. Four cannulated Holstein steers (213±4 kg) were used in a 4×4 Latin square design to examine the combination of Optigen and U in a finishing diet containing different starch:acid detergent fibre ratios (S:F) on the characteristics of digestive function. Three S:F ratios (3.0, 4.5, and 6.0) were tested using a combination of U (0.80%) and Optigen (1.0%). Additionally, a treatment of 4.5 S:F ratio with urea (0.80% in ration) as the sole source of non-protein nitrogen was used to compare the effect of urea combination at same S:F ratio. The S:F ratio of the diet was manipulated by replacing the corn grain by dried distillers grain with solubles and roughage. Urea combination did not affect ruminal pH. The S:F ratio did not affect ruminal pH at 0 and 2 h post-feeding but, at 4 and 6 h, the ruminal pH decreased as the S:F ratio increased (linear, p<0.05). Ruminal digestion of OM, starch and feed N were not affected by urea combination or S:F ratio. The urea combination did not affect ADF ruminal digestion. ADF ruminal digestion decreased linearly (p = 0.02) as the S:F ratio increased. Compared to the urea treatment (p<0.05) and within the urea combination treatment (quadratic, p<0.01), the flow of microbial nitrogen (MN) to the small intestine and ruminal microbial efficiency were greater for the urea combination at a S:F ratio of 4.5. Irrespective of the S:F ratio, the urea combination improved (2.8%, p = 0.02) postruminal N digestion. As S:F ratio increased, OM digestion increased, but ADF total tract digestion decreased. The combination of urea at 4.5 S:F improved (2%, p = 0.04) the digestible energy (DE) more than expected. Combining urea and Optigen resulted in positive effects on the MN flow and DE of the diet, but apparently these advantages are observed only when there is a certain proportion of starch:ADF in the diet.

SELECTION OF CITATIONS
SEARCH DETAIL
...