Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrdata ; 8(Pt 8): x230616, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37693788

ABSTRACT

The structure of the title Fe complex, [Fe(C5H5)2(C17H16N4O)], was determined at 130 K, and has ortho-rhom-bic (Pna21) symmetry. It is of inter-est with respect to the class of triazine heterocyclic compounds: the triazine ring is substituted by two ferrocenyl and one morpholine groups. The crystal structure features C-H⋯O and C-H⋯N non-classical hydrogen bonds.

2.
Polymers (Basel) ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177274

ABSTRACT

The influence of trifluoromethanesulfonic (TFSA) superacid on conditions of the synthesis of polybenzimidazoles, such as OPBI and CF3PBI, was studied. It was shown that the polycondensations proceeded smoother and at lower temperatures in the presence of the TFSA in Eaton's Reagent and that polymers of high molecular weights, and readily soluble in organic solvents, were obtained. The effect was more pronounced for CF3PBI, where the low reactivity monomer, 4,4' (hexafluoroisoproylidene)bis (benzoic acid), was used. CF3PBI was obtained at a moderate temperature of 140 °C with no gel fraction and exhibited an inherent viscosity twice higher than the one obtained by the traditional method. In fact, the addition of TFSA allows the obtention of soluble N-phenyl substituted CF3PBI by direct synthesis, which had not been obtained otherwise. Thus, the use of TFSA is a good media for the synthesis of N-substituted PBIs under relatively mild conditions.

3.
Polymers (Basel) ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36987115

ABSTRACT

An optimized synthesis of the monomer 2,2'3,3'-biphenyltetracarboxylic dianhydride, iBPDA, was performed to obtain high molecular weight polymers. This monomer has a contorted structure that produces a non-linear shape, hindering the packing of the polymer chain. Aromatic polyimides of high molecular weight were obtained by reaction with the commercial diamine 2,2-bis(4-aminophenyl) hexafluoropropane, 6FpDA, which is a very common monomer in gas separation applications. This diamine has hexafluoroisopropylidine groups which introduce rigidity in the chains, hindering efficient packing. The thermal treatment of the polymers processed as dense membranes had two targets: on the one hand, to achieve the complete elimination of the solvent used, which could remain occluded in the polymeric matrix, and on the other hand to ensure the complete cycloimidization of the polymer. A thermal treatment exceeding the glass transition temperature was performed to ensure the maximum degree of imidization at 350 °C. The good mechanical properties of these materials allow for their use in high-pressure gas purification applications. Moreover, models of the polymers exhibited an Arrhenius-like behavior characteristic of secondary relaxations, normally associated with local motions of the molecular chain. The gas productivity of these membranes was high.

4.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559884

ABSTRACT

A set of aromatic copolyimides was obtained by reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and mixtures of the diamines 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2,5-di-tert-butylbenzene (CF3TBAPB) and 3,5-diamino benzoic acid (DABA). These polymers were characterized and compared with the homopolymer derived from 6FDA and CF3TBAPB. All copolyimides showed high molecular weight values and good mechanical properties. The presence of carboxylic groups in these copolymers allowed their chemical crosslinking by reaction with 1,4-butanediol. Glass transition temperatures (Tg) were higher than 260 °C, showing the non-crosslinked copolyimides had the highest Tg values. Degradation temperature of crosslinked copolyimides was lower than their corresponding non-crosslinked ones. Mechanical properties of all polymers were good, and thus, copolyimide (precursor, and crosslinked ones) films could be tested as gas separation membranes. It was observed that CO2 permeability values were around 100 barrer. Finally, the plasticization resistance of the crosslinked material having a large number of carboxylic groups was excellent.

5.
ACS Appl Mater Interfaces ; 10(31): 26195-26205, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30001102

ABSTRACT

A new generation of porous polymer networks has been obtained in quantitative yield by reacting two rigid trifunctional aromatic monomers (1,3,5-triphenylbenzene and triptycene) with two ketones having electron-withdrawing groups (trifluoroacetophenone and isatin) in superacidic media. The resulting amorphous networks are microporous materials, with moderate Brunauer-Emmett-Teller surface areas (from 580 to 790 m2 g-1), and have high thermal stability. In particular, isatin yields networks with a very high narrow microporosity contribution, 82% for triptycene and 64% for 1,3,5-triphenylbenzene. The existence of favorable interactions between lactams and CO2 molecules has been stated. The materials show excellent CO2 uptakes (up to 207 mg g-1 at 0 °C/1 bar) and can be regenerated by vacuum, without heating. Under postcombustion conditions, their CO2/N2 selectivities are comparable to those of other organic porous networks. Because of the easily scalable synthetic method and their favorable characteristics, these materials are very promising as industrial adsorbents.

6.
Materials (Basel) ; 8(4): 1951-1965, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-28788041

ABSTRACT

A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180-200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0-1.3 dL/g). All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients) toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.

SELECTION OF CITATIONS
SEARCH DETAIL
...