Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 306(10): 2597-2609, 2023 10.
Article in English | MEDLINE | ID: mdl-36794994

ABSTRACT

The fossil record of pinnipeds documents a suite of morphological changes that facilitate their ecological transition from a terrestrial to an aquatic lifestyle. Among these is the loss of the tribosphenic molar and the behavior typically associated with it in mammals: mastication. Instead, modern pinnipeds exhibit a broad range of feeding strategies that facilitate their distinct aquatic ecologies. Here, we examine the feeding morphology of two species of pinnipeds with disparate feeding ecologies: Zalophus californianus, a specialized raptorial biter, and Mirounga angustirostris, a suction specialist. Specifically, we test whether the morphology of the lower jaws facilitates trophic plasticity in feeding for either of these species. We used finite element analysis (FEA) to simulate the stresses during the opening and closing of the lower jaws in these species to explore the mechanical limits of their feeding ecology. Our simulations demonstrate that both jaws are highly resistant to the tensile stresses experienced during feeding. The lower jaws of Z. californianus experienced the maximum stress at the articular condyle and the base of the coronoid process. The lower jaws of M. angustirostris experienced the maximum stress at the angular process and were more evenly distributed throughout the body of the mandible. Surprisingly, the lower jaws of M. angustirostris were even more resistant to the stresses experienced during feeding than those of Z. californianus. Thus, we conclude that the superlative trophic plasticity of Z. californianus is driven by other factors unrelated to the mandible's tensile resistance to stress during feeding.


Subject(s)
Caniformia , Sea Lions , Seals, Earless , Animals , Jaw , Mandible
2.
C R Biol ; 342(9-10): 309-321, 2019.
Article in English | MEDLINE | ID: mdl-31784218

ABSTRACT

Damselfishes of the genus Stegastes are among the most conspicuous benthic reef-associated fish in the Gulf of California, and the two most commonly found species are the Beaubrummel Gregory Stegastes flavilatus and the Cortez damselfish Stegastes rectifraenum. Both species are described as ecologically and morphologically very similar. However, the niche theory predicts that coexisting species will tend to minimize competition through niche partitioning. We, therefore, investigated the degree of their ecological similarity through their morphology, trophic ecology, and spatial distribution, as well as, the effects of environmental variables on their abundance. We showed that S. rectifraenum is highly abundant in the entire Gulf of California while S. flavilatus is only found in the central and southern part. The abundance of S. rectifraenum was higher in shallow water and decreased when the cover of macroalgae and sand increased. No environmental variable was related to the abundance of S. flavilatus. Both species had distinct isotopic niches: S. flavilatus fed almost exclusively on plankton and zoobenthos, while S. rectifraenum had an omnivorous diet mixing turf, zoobenthos and plankton. The diet divergence was reflected in the morphology of the two species. Stegastes flavilatus had a more rounded body shape, with a higher supraoccipital crest and more gill rakers than S. rectifraenum, which may increase its ability to feed on vagile invertebrates and zooplankton. Our results support the hypothesis that a niche partition has occurred between the two species. Furthermore, the importance of planktonic food sources to both species, considered as benthic territorial feeders, challenges the traditional ecological description of the Stegastes species.


Subject(s)
Ecology , Perciformes/physiology , Animals , Gills/physiology
3.
Ecol Lett ; 22(4): 572-582, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30648337

ABSTRACT

A core eco-evolutionary aim is to better understand the factors driving the diversification of functions in ecosystems. Using phylogenetic, trophic, and functional information, we tested whether trophic habits (i.e. feeding guilds) affect lineage and functional diversification in two major radiations of reef fishes. Our results from wrasses (Labridae) and damselfishes (Pomacentridae) do not fully support the 'dead-end' hypothesis that specialisation leads to reduce speciation rates because the tempo of lineage diversification did not substantially vary among guilds in both fish families. Our findings also demonstrate a tight relationship between trophic habits and functional roles held by fish in reef ecosystems, which is not associated with a variation in the tempo of functional diversification among guilds. By illustrating the pivotal importance of the generalist feeding strategy during the evolutionary history of reef fishes, our study emphasises the role of this feeding guild as a reservoir for future diversity.


Subject(s)
Ecosystem , Fishes , Perciformes , Animals , Coral Reefs , Phylogeny
4.
J Morphol ; 277(5): 603-14, 2016 May.
Article in English | MEDLINE | ID: mdl-26919129

ABSTRACT

As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification.


Subject(s)
Adaptation, Physiological , Ecosystem , Perciformes/anatomy & histology , Animals , Phylogeny , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...