Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430008

ABSTRACT

Ice-building up on the leading edge of wings and other surfaces exposed to icing atmospheric conditions can negatively influence the aerodynamic performances of aircrafts. In the past, research activities focused on understanding icing phenomena and finding effective countermeasures. Efforts have been dedicated to creating coatings capable of reducing the adhesion strength of ice to a surface. Nevertheless, coatings still lack functional stability, and their application can be harmful to health and the environment. Pulsed laser surface treatments have been proven as a viable technology to induce icephobicity on metallic surfaces. However, a study aimed to find the most effective microstructures for reducing ice adhesion still needs to be carried out. This study investigates the variation of the ice adhesion strength of micro-textured aluminum surfaces treated using laser-based methods. The icephobic performance is tested in an icing wind tunnel, simulating realistic icing conditions. Finally, it is shown that optimum surface textures lead to a reduction of the ice adhesion strength from originally 57 kPa down to 6 kPa, corresponding to a relative reduction of ~90%. Consequently, these new insights will be of great importance in the development of functionalized surfaces, permitting an innovative approach to prevent the icing of aluminum components.

2.
Materials (Basel) ; 13(1)2020 Jan 03.
Article in English | MEDLINE | ID: mdl-31947726

ABSTRACT

Direct laser interference patterning (DLIP) has proven to be a fast and, at the same time, high-resolution process for the fabrication of large-area surface structures. In order to provide structures with adequate quality and defined morphology at the fastest possible fabrication speed, the processing parameters have to be carefully selected. In this work, an analytical model was developed and verified by experimental data, which allows calculating the morphological properties of periodic structures as a function of most relevant laser-processing parameters. The developed model permits to improve the process throughput by optimizing the laser spot diameter, as well as pulse energy, and repetition rate. The model was developed for the structures formed by a single scan of the beam in one direction. To validate the model, microstructures with a 5.5 µm spatial period were fabricated on stainless steel by means of picosecond DLIP (10 ps), using a laser source operating at a 1064 nm wavelength. The results showed a difference of only 10% compared to the experimental results.

3.
Materials (Basel) ; 12(17)2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31461830

ABSTRACT

Superhydrophobic natural surfaces usually have multiple levels of structure hierarchy, particularly microstructures covered with nano-roughness. The multi-scale nature of such a surface reduces the wetting of water and oils, and supports self-cleaning properties. In this work, in order to broaden our understanding of the wetting properties of technical surfaces, biomimetic surface patterns were fabricated on stainless steel with single and multi-scale periodic structures using direct laser interference patterning (DLIP). Micropillars with a spatial period of 5.5 µm and a structural depth of 4.2 µm were fabricated and covered by a sub-micro roughness by using ultrashort laser pulses, thus obtaining a hierarchical geometry. In order to distinguish the influence of the different features on the wettability behavior, a nanosecond laser source was used to melt the nano-roughness, and thus to obtain single-scale patterns. Then, a systematic comparison between the single- and multi-scale structures was performed. Although, the treated surfaces showed hydrophilic behavior directly after the laser treatment, over time they reached a steady-state hydrophobic condition. However, the multi-scale structured metal showed a contact angle 31° higher than the single-scale geometry when the steady-state conditions were reached. Furthermore, the impact of the surface chemistry was investigated by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analyses. Finally, a hydrophobizing agent was applied to the laser treated samples in order to further enhance the water contact angles and to determine the pure contribution of the surface topography. In the latter case, the multi-scale periodic microstructures reached static contact angles of 152° ± 2° and a contact angle hysteresis of only 4° ± 2°, while the single-scale structures did not show superhydrophobic behavior. These results definitely suggest that multi-scale DLIP structures in conjunction with a surface chemistry modification can promote a superhydrophobic regime.

4.
Sci Rep ; 9(1): 5455, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30931990

ABSTRACT

The direct fabrication of microstructures, having a non-symmetrical morphology with controllable inclination, presents nowadays a challenging task. Natural examples of surfaces with inclined topographies have shown to provide anisotropic functionalities, which have attracted the interest of several researchers in the last years. This work presents a microfabrication technique for producing microstructures with a determined and controllable inclination angle using two-beam Direct Laser Interference Patterning. Polyimide foils are irradiated with a 4 ns UV (266 nm) laser source producing line-like structures with a period varying from 4.6 µm to 16.5 µm. The inclinations, retrieved by tilting the sample with respect to the optical axis of the setup, are changed from 0° to 75°, introducing a well controllable and defined inclination of the structure walls. The structuring parameters (laser fluence, number of laser pulses and interference period) as well as the inclination of the microstructures are correlated with the global tilting of the sample. As a result, a determined laser fluence and number of pulses are necessary to observe a remarkable non-symmetrical morphology of the structures. In addition, the presence of structural undercuts is reported, which opens the possibility for developing new direction-dependent properties on polymeric materials. As an example, preliminary results on light diffraction are presented, showing a similar behavior as blazed diffraction gratings.

SELECTION OF CITATIONS
SEARCH DETAIL
...