Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961536

ABSTRACT

The essential stress-responsive chaperone Hsp90 impacts development and adaptation from microbes to humans. Yet despite evidence of its role in evolution, pathogenesis, and oncogenic transformation, the molecular mechanisms by which Hsp90 alters the consequences of mutations remain vigorously debated. Here we exploit the power of nucleotide-resolution genetic mapping in Saccharomyces cerevisiae to uncover more than 1,000 natural variant-to-phenotype associations governed by this molecular chaperone. Strikingly, Hsp90 more frequently modified the phenotypic effects of cis-regulatory variation than variants that altered protein sequence. Moreover, these interactions made the largest contribution to Hsp90-dependent heredity. Nearly all interacting variants-both regulatory and protein-coding-fell within clients of Hsp90 or targets of its direct binding partners. Hsp90 activity affected mutations in evolutionarily young genes, segmental deletions, and heterozygotes, highlighting its influence on variation central to evolutionary novelty. Reconciling the diverse epistatic effects of this chaperone, synthetic transcriptional regulation and reconstructions of natural alleles by genome editing revealed a central role for Hsp90 in regulating the fundamental relationship between activity and phenotype. Our findings establish that non-coding variation is a core driver of Hsp90's influence on heredity, offering a mechanistic explanation for the chaperone's strong effects on evolution and development across species.

2.
Genome Biol Evol ; 11(8): 2360-2375, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31297528

ABSTRACT

Protein stability is a major constraint on protein evolution. Molecular chaperones, also known as heat-shock proteins, can relax this constraint and promote protein evolution by diminishing the deleterious effect of mutations on protein stability and folding. This effect, however, has only been stablished for a few chaperones. Here, we use a comprehensive chaperone-protein interaction network to study the effect of all yeast chaperones on the evolution of their protein substrates, that is, their clients. In particular, we analyze how yeast chaperones affect the evolutionary rates of their clients at two very different evolutionary time scales. We first study the effect of chaperone-mediated folding on protein evolution over the evolutionary divergence of Saccharomyces cerevisiae and S. paradoxus. We then test whether yeast chaperones have left a similar signature on the patterns of standing genetic variation found in modern wild and domesticated strains of S. cerevisiae. We find that genes encoding chaperone clients have diverged faster than genes encoding non-client proteins when controlling for their number of protein-protein interactions. We also find that genes encoding client proteins have accumulated more intraspecific genetic diversity than those encoding non-client proteins. In a number of multivariate analyses, controlling by other well-known factors that affect protein evolution, we find that chaperone dependence explains the largest fraction of the observed variance in the rate of evolution at both evolutionary time scales. Chaperones affecting rates of protein evolution mostly belong to two major chaperone families: Hsp70s and Hsp90s. Our analyses show that protein chaperones, by virtue of their ability to buffer destabilizing mutations and their role in modulating protein genotype-phenotype maps, have a considerable accelerating effect on protein evolution.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Fungal , Genome, Fungal , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Molecular Chaperones/genetics , Phylogeny , Protein Interaction Maps , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Selection, Genetic , Transcriptome
3.
FEMS Microbiol Lett ; 366(10)2019 05 01.
Article in English | MEDLINE | ID: mdl-31150542

ABSTRACT

Bacterial cells adapting to a constant environment tend to accumulate mutations in portions of their genome that are not maintained by selection. This process has been observed in bacteria evolving under strong genetic drift, and especially in bacterial endosymbionts of insects. Here, we study this process in hypermutable Escherichia coli populations evolved through 250 single-cell bottlenecks on solid rich medium in a mutation accumulation experiment that emulates the evolution of bacterial endosymbionts. Using phenotype microarrays monitoring metabolic activity in 95 environments distinguished by their carbon sources, we observe how mutation accumulation has decreased the ability of cells to metabolize most carbon sources. We study if the chaperonin GroEL, which is naturally overproduced in bacterial endosymbionts, can ameliorate the process of metabolic erosion, because of its known ability to buffer destabilizing mutations in metabolic enzymes. Our results indicate that GroEL can slow down the negative phenotypic consequences of genome decay in some environments.


Subject(s)
Chaperonin 60/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation Accumulation , Phenotype , Symbiosis , Carbon/metabolism , Chaperonin 60/metabolism , Directed Molecular Evolution , Genome, Bacterial
4.
Genome Biol Evol ; 10(11): 3076-3088, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30351420

ABSTRACT

Different genes and proteins evolve at very different rates. To identify the factors that explain these differences is an important aspect of research in molecular evolution. One such factor is the role a protein plays in a large molecular network. Here, we analyze the evolutionary rates of enzyme-coding genes in the genome-scale metabolic network of Escherichia coli to find the evolutionary constraints imposed by the structure and function of this complex metabolic system. Central and highly connected enzymes appear to evolve more slowly than less connected enzymes, but we find that they do so as a by-product of their high abundance, and not because of their position in the metabolic network. In contrast, enzymes catalyzing reactions with high metabolic flux-high substrate to product conversion rates-evolve slowly even after we account for their abundance. Moreover, enzymes catalyzing reactions that are difficult to by-pass through alternative pathways, such that they are essential in many different genetic backgrounds, also evolve more slowly. Our analyses show that an enzyme's role in the function of a metabolic network affects its evolution more than its place in the network's structure. They highlight the value of a system-level perspective for studies of molecular evolution.


Subject(s)
Enzymes/genetics , Evolution, Molecular , Genome, Bacterial , Metabolic Networks and Pathways , Escherichia coli , Point Mutation , Principal Component Analysis
5.
PLoS Genet ; 14(4): e1007324, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29702649

ABSTRACT

Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.


Subject(s)
Adaptation, Physiological/genetics , Escherichia coli/genetics , Evolution, Molecular , Mutation Rate , Algorithms , Genetic Fitness , Genetic Variation , Genetics, Population/methods , Models, Genetic , Selection, Genetic , Whole Genome Sequencing/methods
6.
Evolution ; 72(6): 1242-1260, 2018 06.
Article in English | MEDLINE | ID: mdl-29676774

ABSTRACT

Recent advances in high-throughput technologies are bringing the study of empirical genotype-phenotype (GP) maps to the fore. Here, we use data from protein-binding microarrays to study an empirical GP map of transcription factor (TF) -binding preferences. In this map, each genotype is a DNA sequence. The phenotype of this DNA sequence is its ability to bind one or more TFs. We study this GP map using genotype networks, in which nodes represent genotypes with the same phenotype, and edges connect nodes if their genotypes differ by a single small mutation. We describe the structure and arrangement of genotype networks within the space of all possible binding sites for 525 TFs from three eukaryotic species encompassing three kingdoms of life (animal, plant, and fungi). We thus provide a high-resolution depiction of the architecture of an empirical GP map. Among a number of findings, we show that these genotype networks are "small-world" and assortative, and that they ubiquitously overlap and interface with one another. We also use polymorphism data from Arabidopsis thaliana to show how genotype network structure influences the evolution of TF-binding sites in vivo. We discuss our findings in the context of regulatory evolution.


Subject(s)
Demography , Genotype , Models, Genetic , Animals , Evolution, Molecular , Fungi/genetics , Phenotype , Plants/genetics
7.
Nat Ecol Evol ; 1(2): 45, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28812623

ABSTRACT

The adaptive landscape is an iconic metaphor that pervades evolutionary biology. It was mostly applied in theoretical models until recent years, when empirical data began to allow partial landscape reconstructions. Here, we exhaustively analyse 1,137 complete landscapes from 129 eukaryotic species, each describing the binding affinity of a transcription factor to all possible short DNA sequences. We find that the navigability of these landscapes through single mutations is intermediate to that of additive and shuffled null models, suggesting that binding affinity-and thereby gene expression-is readily fine-tuned via mutations in transcription factor binding sites. The landscapes have few peaks that vary in their accessibility and in the number of sequences they contain. Binding sites in the mouse genome are enriched in sequences found in the peaks of especially navigable landscapes and the genetic diversity of binding sites in yeast increases with the number of sequences in a peak. Our findings suggest that landscape navigability may have contributed to the enormous success of transcriptional regulation as a source of evolutionary adaptations and innovations.

8.
Chromosoma ; 126(1): 145-163, 2017 02.
Article in English | MEDLINE | ID: mdl-26892014

ABSTRACT

Kinetochores allow attachment of chromosomes to spindle microtubules. Moreover, they host proteins that permit correction of erroneous attachments and prevent premature anaphase onset before bi-orientation of all chromosomes in metaphase has been achieved. Kinetochores are assembled from subcomplexes. Kinetochore proteins as well as the underlying centromere proteins and the centromeric DNA sequences evolve rapidly despite their fundamental importance for faithful chromosome segregation during mitotic and meiotic divisions. During evolution of Drosophila melanogaster, several centromere proteins were lost and a recent gene duplication has resulted in two Nnf1 paralogs, Nnf1a and Nnf1b, which code for alternative forms of a Mis12 kinetochore complex component. The rapid evolutionary divergence of centromere/kinetochore constituents in animals and plants has been proposed to be driven by an intragenome conflict resulting from centromere drive during female meiosis. Thus, a female meiosis-specific paralog might be expected to evolve rapidly under positive selection. While our characterization of the D. melanogaster Nnf1 paralogs hints at some partial functional specialization of Nnf1b for meiosis, we have failed to detect evidence for positive selection in our analysis of Nnf1 sequence evolution in the Drosophilid lineage. Neither paralog is essential, even though we find some clear differences in subcellular localization and expression during development. Loss of both paralogs results in developmental lethality. We therefore conclude that the two paralogs are still in early stages of differentiation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Germ Cells/metabolism , Kinetochores/metabolism , Animals , Animals, Genetically Modified , Cell Cycle/genetics , Cell Survival/genetics , Drosophila/classification , Drosophila/genetics , Drosophila Proteins/genetics , Female , Fertility/genetics , Gene Duplication , Gene Expression , Male , Meiosis , Phylogeny , Protein Transport , Selection, Genetic
9.
Genome Biol Evol ; 8(9): 2979-2991, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27497316

ABSTRACT

Molecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mechanism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations. Here, we show that they can. To this end, we performed a mutation accumulation experiment in Escherichia coli, followed by whole-genome resequencing. Overexpression of the Hsp70 chaperone DnaK helps cells cope with mutational load and completely avoid the extinctions we observe in lineages evolving without chaperone overproduction. Additionally, our sequence data show that DnaK overexpression increases mutational robustness, the tolerance of its clients to nonsynonymous nucleotide substitutions. We also show that this elevated mutational buffering translates into differences in evolutionary rates on intermediate and long evolutionary time scales. Specifically, we studied the evolutionary rates of DnaK clients using the genomes of E. coli, Salmonella enterica, and 83 other gamma-proteobacteria. We find that clients that interact strongly with DnaK evolve faster than weakly interacting clients. Our results imply that all three major chaperone classes can buffer mutations and affect protein evolution. They illustrate how an individual protein like a chaperone can have a disproportionate effect on the evolution of a proteome.


Subject(s)
Escherichia coli Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Mutation Rate , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Point Mutation
10.
Nucleic Acids Res ; 44(W1): W70-6, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27106055

ABSTRACT

A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch.


Subject(s)
Gene Regulatory Networks , Genotype , Phenotype , User-Computer Interface , Amino Acid Sequence , Computer Graphics , DNA/genetics , Evolution, Molecular , Gene Expression Regulation , Humans , Internet , Mutation , RNA/genetics , Selection, Genetic , Viruses/genetics
11.
Genome Biol Evol ; 8(5): 1290-8, 2016 05 09.
Article in English | MEDLINE | ID: mdl-26988250

ABSTRACT

In the experimental evolution of microbes such as Escherichia coli, many replicate populations are evolved from a common ancestor. Freezing a population sample supplemented with the cryoprotectant glycerol permits later analysis or restarting of an evolution experiment. Typically, each evolving population, and thus each sample archived in this way, consists of many unique genotypes and phenotypes. The effect of archiving on such a heterogeneous population is unknown. Here, we identified optimal archiving conditions for E. coli. We also used genome sequencing of archived samples to study the effects that archiving has on genomic population diversity. We observed no allele substitutions and mostly small changes in allele frequency. Nevertheless, principal component analysis of genome-scale allelic diversity shows that archiving affects diversity across many loci. We showed that this change in diversity is due to selection rather than drift. In addition, ∼1% of rare alleles that occurred at low frequencies were lost after treatment. Our observations imply that archived populations may be used to conduct fitness or other phenotypic assays of populations, in which the loss of a rare allele may have negligible effects. However, caution is appropriate when sequencing populations restarted from glycerol stocks, as well as when using glycerol stocks to restart or replay evolution. This is because the loss of rare alleles can alter the future evolutionary trajectory of a population if the lost alleles were strongly beneficial.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Genetic Variation/genetics , Genome, Bacterial , Selection, Genetic/genetics , Biological Evolution , Freezing
12.
Mol Biol Evol ; 32(10): 2681-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116858

ABSTRACT

Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherichia coli expressing high levels of the essential chaperonin GroEL. GroEL is abundantly present in bacteria, particularly in bacteria with large loads of deleterious mutations, suggesting its role in mutational buffering. We show that groEL overexpression is costly to large populations evolving in the laboratory, leading to groE expression decline within 66 generations. In contrast, populations evolving under the strong genetic drift characteristic of endosymbiotic bacteria avoid extinction or can be rescued in the presence of abundant GroEL. Genomes resequenced from cells evolved under strong genetic drift exhibited significantly higher tolerance to deleterious mutations at high GroEL levels than at native levels, revealing that GroEL is buffering mutations in these cells. GroEL buffered mutations in a highly diverse set of proteins that interact with the environment, including substrate and ion membrane transporters, hinting at its role in ecological diversification. Our results reveal the fitness trade-offs of mutational buffering and how genetic variation is maintained in populations.


Subject(s)
Chaperonin 60/genetics , Escherichia coli/genetics , Genetic Fitness , Mutation/genetics , Cell Line , Chaperonin 60/metabolism , Directed Molecular Evolution , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genetic Drift , Operon/genetics , Subcellular Fractions/metabolism
13.
J R Soc Interface ; 12(105)2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25740854

ABSTRACT

Electrical communication between cardiomyocytes can be perturbed during arrhythmia, but these perturbations are not captured by conventional electrocardiographic metrics. We developed a theoretical framework to quantify electrical communication using information theory metrics in two-dimensional cell lattice models of cardiac excitation propagation. The time series generated by each cell was coarse-grained to 1 when excited or 0 when resting. The Shannon entropy for each cell was calculated from the time series during four clinically important heart rhythms: normal heartbeat, anatomical reentry, spiral reentry and multiple reentry. We also used mutual information to perform spatial profiling of communication during these cardiac arrhythmias. We found that information sharing between cells was spatially heterogeneous. In addition, cardiac arrhythmia significantly impacted information sharing within the heart. Entropy localized the path of the drifting core of spiral reentry, which could be an optimal target of therapeutic ablation. We conclude that information theory metrics can quantitatively assess electrical communication among cardiomyocytes. The traditional concept of the heart as a functional syncytium sharing electrical information cannot predict altered entropy and information sharing during complex arrhythmia. Information theory metrics may find clinical application in the identification of rhythm-specific treatments which are currently unmet by traditional electrocardiographic techniques.


Subject(s)
Cell Communication/physiology , Heart Conduction System/physiology , Heart/physiology , Models, Cardiovascular , Myocytes, Cardiac/physiology , Electrophysiology , Humans
14.
Nucleic Acids Res ; 39(Database issue): D70-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21036865

ABSTRACT

This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.


Subject(s)
Databases, Genetic , Retroelements , Retroviridae/genetics , Terminal Repeat Sequences , Caulimoviridae/classification , Caulimoviridae/genetics , Phylogeny , Retroviridae/classification , Retroviridae Proteins/chemistry , Retroviridae Proteins/classification , Retroviridae Proteins/genetics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...