Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 226(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37408509

ABSTRACT

Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global 'light-avoidance response'. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day and light spots due to the sun's relative movement alert the fish to hide in shady zones to avoid macroptic predators and facilitate tracking the movement of floating plant islands by wind and/or water currents.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Electric Organ/physiology , Gymnotiformes/physiology , Movement , Electric Fish/physiology
2.
Biosystems ; 223: 104800, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343760

ABSTRACT

This article introduces and tests a simple model that describes a neural network found in nature, the electrosensory control of an electromotor pacemaker. The cornerstone of the model is an early-stage filter based on the subtraction of a feedforward integrated version of the recent sensory past from the present input signal. The output of this filter governs the modulation of a premotor pacemaker command driving the sensory signal carrier generation and, in consequence, the timing of subsequent electrosensory input. This early filter has a biological parallel in the known connectivity of the first electrosensory relay within the brain stem of the weakly electric fish Gymnotus omarorum. Our biomimetic model of this active, perception-driven action-sensation cycle was contrasted with previously published and here provided new data. When the amplitude of the electrosensory input was manipulated to mimic previous experiments on the novelty detection characteristics, the model reproduces them rather faithfully. In addition, when we applied continuous variations to the input it shows that increases in stimulus amplitudes are followed by increases in the EOD rate, but decreases do not cause rate modulation suggesting a rectification in some stage of the loop. These behavioral experiments confirmed results generated the simulations suggesting that beyond explaining the novelty detection process this simple model is a good description of the electrosensory -electromotor loop in pulse weakly electric fish.


Subject(s)
Electric Fish , Gymnotiformes , Animals , Electric Organ , Sensation
3.
Biosystems ; 223: 104803, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371021

ABSTRACT

The pulse emitting weakly electric fish Gymnotus omarorum shows stereotyped "novelty responses" consisting of a transient acceleration of the rhythm of a self-emitted electric organ discharge that carries electrosensory signals. Here we show that rapid increases in electric image amplitude cause a "novelty detection potential" in the first electrosensory relay. This sign precedes and its amplitude predicts, the amplitude of the subsequent behavioral novelty response. Current source density analyses indicates its origin ar the layers of the electrosensory lobe where the main output neurons occur. Two types of units, referred to as "ON" and "OFF". Were recorded there in decerebrated fish. Firing probability of "OFF" units drastically decreased after a stepwise increase in electric image. By contrast, the very first novel stimuli after the increase evoked a sharp peak in firing rate of "ON" units followed by a very fast adaptation phase that contrasted with the slow adaptation observed in previous recordings of primary afferents. The amplitudes of this peak, the novelty detection potential, and the behavioral novelty responses, show the same dependence on the departure of the newest stimulus intensity from the weighted average of preceding ones suggesting that the signals encoded by "ON" neurons underlay the novelty detection potential, propagates through the hierarchical organization of the electromotor control, and finally contribute to accelerate the electric organ discharge rate. This suggests that detecting novelty at the very early processing stage of electrosensory signals is essential to adapt the electrosensory sampling rate to exploration requirements as they change dynamically.


Subject(s)
Electric Fish , Animals , Electric Fish/physiology , Electric Organ/physiology , Neurons
4.
Plants (Basel) ; 10(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923075

ABSTRACT

The studies on the Posidonia oceanica Delile (P. oceanica) phenolic composition have been focused on the foliar tissues and have often neglected the phenolic compounds in rhizomes or roots alike. With the current improvements in high resolution mass spectrometry (HRMS) analyzers, such as the Orbitrap MS, there is a new opportunity to more deeply study P. oceanica. One of the benefits is the possibility of conducting an exhaustive phenolic monitoring, which is crucial in the search for new stressor-specific biomarkers of coastal deterioration. For this purpose, the different tissues (leaf, rhizome, and root) of P. oceanica seagrass from several marine sampling areas were analyzed through target, suspected, and non-target screenings. This paper brings a fast and tissues-specific extraction, as well as a detection method of phenolic compounds applying for the first time the potential of HRMS (Exactive Orbitrap) in P. oceanica samples. As a result, 42 phenolic compounds were satisfactorily detected, of which, to our knowledge, 24 were not previously reported in P. oceanica, such as naringenin, naringenin chalcone and pinocembrin, among others. Information here reported could be used for the evaluation of new stressor-specific biomarkers of coastal deterioration in the Mediterranean waters. Furthermore, the followed extraction and analytical method could be considered as a reference protocol in other studies on marine seagrasses due to the exhaustive search and satisfactory results.

5.
Ambio ; 50(1): 150-162, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32086786

ABSTRACT

Conservation easements are the fastest growing private conservation strategy in the United States. However, mechanisms to assess private land conservation as well as their support by the general public are not well understood. This study uses the ecosystem services framework for assessing existing private lands in Idaho and identifies areas for future conservation easements. Using conservation targets of the land trust as a guide for selecting ecosystem services, we (a) mapped the spatial delivery of conservation targets across public and private lands, (b) explored public awareness in terms of social importance and vulnerability, and (c) mapped future priority areas by characterizing conservation bundles. We found that public lands provided the highest levels of conservation targets, and we found no difference in conservation target provision between private areas and conservation easements. The spatial characterization of conservation target bundles identified potential future priority areas for conservation easements, which can guide planning of land trust conservation efforts.


Subject(s)
Conservation of Natural Resources , Ecosystem , United States
6.
Entropy (Basel) ; 22(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-33285898

ABSTRACT

Socio-ecological systems are recognized as complex adaptive systems whose multiple interactions might change as a response to external or internal changes. Due to its complexity, the behavior of the system is often uncertain. Bayesian networks provide a sound approach for handling complex domains endowed with uncertainty. The aim of this paper is to analyze the impact of the Bayesian network structure on the uncertainty of the model, expressed as the Shannon entropy. In particular, three strategies for model structure have been followed: naive Bayes (NB), tree augmented network (TAN) and network with unrestricted structure (GSS). Using these network structures, two experiments are carried out: (1) the impact of the Bayesian network structure on the entropy of the model is assessed and (2) the entropy of the posterior distribution of the class variable obtained from the different structures is compared. The results show that GSS constantly outperforms both NB and TAN when it comes to evaluating the uncertainty of the entire model. On the other hand, NB and TAN yielded lower entropy values of the posterior distribution of the class variable, which makes them preferable when the goal is to carry out predictions.

7.
Bioinspir Biomim ; 15(3): 035008, 2020 04 09.
Article in English | MEDLINE | ID: mdl-31899911

ABSTRACT

Weakly electric fish polarize the nearby environment with a stereotyped electric field and gain information by detecting the changes imposed by objects with tuned sensors. Here we focus on polarization strategies as paradigmatic bioinspiring mechanisms for sensing devices. We begin this research developing a toy model that describes three polarization strategies exhibited by three different groups of fish. We then report an experimental analysis which confirmed predictions of the model and in turn predicted functional consequences that were explored in behavioral experiments in the pulse fish Gymnotus omarorum. In the experiments, polarization was evaluated by estimating the object's stamp (i.e. the electric source that produces the same electric image as the object) as a function of object impedance, orientation, and position. Signal detection and discrimination was explored in G. omarorum by provoking novelty responses, which are known to reflect the increment in the electric image provoked by a change in nearby impedance. To achieve this, we stepped the longitudinal impedance of a cylindrical object between two impedances (either capacitive or resistive). Object polarization and novelty responses indicate that G. omarorum has two functional regions in the electrosensory field. At the front of the fish, there is a foveal field where object position and orientation are encoded in signal intensity, while the qualia associated with impedance is encoded in signal time course. On the side of the fish there is a peripheral field where the complexity of the polarizing field facilitates detection of objects oriented in any angle with respect to the fish´s longitudinal axis. These findings emphasize the importance of articulating field generation, sensor tuning and the repertoire of exploratory movements to optimize performance of artificial active electrosensory systems.


Subject(s)
Behavior, Animal/physiology , Biosensing Techniques/instrumentation , Gymnotiformes/physiology , Animals , Electric Impedance , Perception
8.
Biochem Biophys Res Commun ; 498(3): 680-685, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29530529

ABSTRACT

Cell migration involves the precise coordination between extension at the front of the cell and retraction at the rear. This coordination is particularly evident in fast moving cells such as fish keratocytes, where it leads to highly stable gliding motion, propelled at the front by broad, 0.1-0-2 µm thick lamellipodia. Transient uncoupling between extension and retraction can occur if the rear is temporarily stuck, which might eventually lead to cell shape instabilities. We have frequently observed in fish keratocytes the presence of lamellipodial radial wrinkles, detected by confocal, scanning electron and side-view microscopy as folds in the lamellipodium up to 2 µm in height. Using a linear finite elements analysis, we simulated the displacement of cells either with perfect coordination between extension and retraction or with the rear transiently stuck while the front continues extending, and we observed that in this last condition compression stresses arise in the lamellipodium which predict the formation of the observed pattern of lamellipodial wrinkles. In support of the numerical modeling findings, we observed that the transient halting of retraction at the rear using micromanipulation induced the formation of lamellipodial wrinkles in previously flat lamellipodia. The obtained results suggest that the conspicuous lamellipodial wrinkles observed in migrating fish keratocytes are the product of transient imbalances between front and rear displacements, and are therefore useful markers of the short scale dynamics of extension and retraction coordination during cell migration.


Subject(s)
Cell Movement , Keratinocytes/cytology , Pseudopodia/ultrastructure , Animals , Cells, Cultured , Computer Simulation , Finite Element Analysis , Goldfish/metabolism , Keratinocytes/metabolism , Keratinocytes/ultrastructure , Microscopy, Confocal , Models, Biological , Pseudopodia/metabolism
9.
J Exp Biol ; 220(Pt 9): 1663-1673, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28202586

ABSTRACT

As in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish Gymnotus omarorum We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge. They also show high sensitivity to phase-frequency distortions of the self-generated local electric field. We explored this sensitivity by manipulating the longitudinal impedance of a probe cylinder to modulate the stimulus waveform, while extracellularly recording isolated primary afferents. Resistive loads only affect the amplitude of the re-afferent signals without distorting the waveform. Capacitive loads cause large waveform distortions aside from amplitude changes. Stepping from a resistive to a capacitive load in such a way that the stimulus waveform was distorted, without changing its total energy, caused strong changes in latency, inter-spike interval and number of spikes of primary afferent responses. These burst parameters are well correlated suggesting that they may contribute synergistically in driving downstream neurons. This correlation also suggests that each receptor encodes a single parameter in the stimulus waveform. The finding of waveform distortion sensitivity is relevant because it may contribute to: (a) enhance electroreceptive range in the peripheral 'electrosensory field', (b) a better identification of living prey at the 'foveal electrosensory field' and (c) detect the presence and orientation of conspecifics. Our results also suggest a revision of the classical view of amplitude and time encoding by fast and slow pathways in pulse-type electric fish.


Subject(s)
Gymnotiformes/physiology , Sensation/physiology , Sensory Receptor Cells/physiology , Animals , Electric Impedance , Electrophysiological Phenomena
10.
Brain Res ; 1536: 27-43, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-23727613

ABSTRACT

Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.


Subject(s)
Electric Organ/physiology , Electrophysiological Phenomena , Perception/physiology , Sensory Receptor Cells/physiology , Animals , Electric Fish/physiology
11.
J Exp Biol ; 215(Pt 9): 1533-41, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22496290

ABSTRACT

We examined non-linear effects of the presence of one object on the electric image of another placed at the foveal region in Gymnotus omarorum. The sensory consequences of object mutual polarization on electric images were also depicted using behavioral procedures. Image measurements show that objects whose electric image is not detectable may modify the electric image of another placed closer to the fish and suggest that detection range and discrimination parameters used for one object may be affected when the presence of others enriches the scene. Behavioral experiments confirm that these changes in object images resulting from mutual polarization may be exploited for improving perception. While conductive objects close to the skin allow the fish to detect other objects placed out of the active electrodetection range, non-conductive objects may hide objects that otherwise show clear electric images. This suggests that fish movements may orient the self-generated field to exploit object mutual polarization, increasing or decreasing the active electrolocation range. In addition, images of a nearby object may be modulated by the presence of another object placed outside the detection range and the corresponding behavioral responses suggest that a moving or impedance-changing context may modify a fish's discrimination abilities for closer objects.


Subject(s)
Distance Perception/physiology , Electric Organ/physiology , Gymnotiformes/physiology , Spatial Behavior/physiology , Animals , Behavior, Animal , Cardiovascular Physiological Phenomena , Electric Conductivity , Electric Impedance , Electricity , Electrophysiology/methods , Movement , Reproducibility of Results , Sensory Receptor Cells
12.
PLoS One ; 6(8): e22793, 2011.
Article in English | MEDLINE | ID: mdl-21876730

ABSTRACT

This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture"). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information.


Subject(s)
Electricity , Gymnotiformes/anatomy & histology , Gymnotiformes/physiology , Imaging, Three-Dimensional , Animals , Electric Organ/physiology , Physical Stimulation , Surface Properties
13.
Environ Monit Assess ; 166(1-4): 241-56, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19479329

ABSTRACT

Salinas systems are artificial wetlands which are interesting from the viewpoint of nature conservation. They play an important role both as habitats for migratory waterbird species and as nodes of biotic connectivity networks. In the Mediterranean basin, where the coastal salinas are highly significant as alternative and complementary habitats for waterbirds, a process of abandonment occurs, and many seminatural systems of this kind are disappearing. This abandonment is having serious consequences for migratory bird populations and for the ecological role these play. In the present paper, this group of waterbird species has been used to evaluate these wetlands for conservation purposes. We have developed a methodological approach for the selection of ecological indicators for the conservation and management of these Mediterranean habitats and waterbird assemblages, the main consumers therein. The stepwise procedure developed constitutes a practical tool for this task. Application thereof enabled us to differentiate the habitats available for the waterbirds and to identify the biotic and abiotic indicators for the maintenance and management of the salina ecosystems. These variables can then be incorporated into monitoring programs.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring/methods , Wetlands , Animals , Biodiversity , Birds/classification , Birds/growth & development , Invertebrates/classification , Invertebrates/growth & development , Mediterranean Sea , Multivariate Analysis , Seawater/chemistry
14.
J Exp Biol ; 212(Pt 9): 1351-64, 2009 May.
Article in English | MEDLINE | ID: mdl-19376956

ABSTRACT

This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1) subopercular (medial and lateral columns of complex shaped electrocytes); (2) abdominal (medial and lateral columns of cuboidal and fusiform electrocytes); and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave (V(1r)) followed by a head-positive spike (V(3r)). The abdominal and main portions generate a fast tetra-phasic complex (V(2345ct)). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V(3r) with V(2) leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V(1r) corresponds to the rostral activation of medial subopercular electrocytes and V(3r) to the caudal activation of all subopercular electrocytes; V(2), and part of V(3ct), corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V(345ct) is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V(3ct)) and it is completed (V(45ct)) by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Animals , Electric Conductivity , Electric Organ/anatomy & histology , Electric Organ/innervation , Gymnotiformes/anatomy & histology , Imaging, Three-Dimensional , Models, Anatomic
15.
J Physiol Paris ; 102(4-6): 256-71, 2008.
Article in English | MEDLINE | ID: mdl-18992336

ABSTRACT

Weakly electric fishes "electrically illuminate" the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids' active electroreception and outline a primary agenda for the next research.


Subject(s)
Electric Organ/innervation , Electric Organ/physiology , Gymnotiformes/anatomy & histology , Gymnotiformes/physiology , Sensory Receptor Cells/physiology , Animals , Behavior, Animal/physiology , Models, Biological , Neural Pathways/anatomy & histology , Neural Pathways/physiology
16.
PLoS One ; 3(5): e2038, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18461122

ABSTRACT

Understanding fixed motor pattern diversity across related species provides a window for exploring the evolution of their underlying neural mechanisms. The electric organ discharges of weakly electric fishes offer several advantages as paradigmatic models for investigating how a neural decision is transformed into a spatiotemporal pattern of action. Here, we compared the far fields, the near fields and the electromotive force patterns generated by three species of the pulse generating New World gymnotiform genus Gymnotus. We found a common pattern in electromotive force, with the far field and near field diversity determined by variations in amplitude, duration, and the degree of synchronization of the different components of the electric organ discharges. While the rostral regions of the three species generate similar profiles of electromotive force and local fields, most of the species-specific differences are generated in the main body and tail regions of the fish. This causes that the waveform of the field is highly site dependant in all the studied species. These findings support a hypothesis of the relative separation of the electrolocation and communication carriers. The presence of early head negative waves in the rostral region, a species-dependent early positive wave at the caudal region, and the different relationship between the late negative peak and the main positive peak suggest three points of lability in the evolution of the electrogenic system: a) the variously timed neuronal inputs to different groups of electrocytes; b) the appearance of both rostrally and caudally innervated electrocytes, and c) changes in the responsiveness of the electrocyte membrane.


Subject(s)
Electric Organ/physiology , Genetic Variation , Gymnotiformes/physiology , Animals , Electric Fish/physiology , Electrophysiology , Gymnotiformes/genetics , Gymnotiformes/growth & development , Models, Biological , Motor Activity , Movement , Neurons/physiology , Skin Physiological Phenomena
17.
J Exp Biol ; 206(Pt 6): 989-98, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12582141

ABSTRACT

Electric fish evaluate the near environment by detecting changes in their self-generated electric organ discharge. To investigate impedance modulation of the self-generated electric field, this field was measured at the electrosensory fovea of Gymnotus carapo in the presence and absence of objects. Changes in local fields provoked by resistive objects were predicted by the change in total energy. Objects with capacitive impedance generated large variations in the relative importance of the different waveform components of the electric organ discharge. We tested the hypothesis that fish discriminate changes in waveform as well as increases in total energy using the novelty response, which is a behavioural response consisting of a transient acceleration of EOD frequency that can follow a change in object impedance. For resistive loads, the amplitude of novelty responses was well predicted by the increase in total energy. For complex loads, the amplitude of novelty responses was correlated not only with increases in total energy but also with waveform changes, consisting of reductions in the early slow negative wave and increases in the late sharp negative wave. The total energy and waveform effects appeared to be additive. These results indicate that G. carapo discriminates complex impedance based on an evaluation of different waveform parameters.


Subject(s)
Electric Organ/physiology , Gymnotiformes/physiology , Sensation/physiology , Sensory Receptor Cells/physiology , Animals , Electric Impedance , Electrophysiology , Orientation
18.
Environ Manage ; 30(5): 716-26, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12375091

ABSTRACT

The Kohonen neural network was applied to hydrochemical data from the Detritic Aquifer of the Lower Andarax, situated in a semiarid zone in the southeast of Spain. An activation map was obtained for each of the sampling points, in which the spatial distribution of the activated neurons indicated different water qualities. To extract the information contained in the activation maps, they were divided into nine quadrats. Cartesian coordinates were assigned to each quadrant ( x, y), and for each sampling point, three derived variables were selected, which were assigned the values x and y of the corresponding quadrat. A classification was defined based on this simple matrix system which allows an easy and rapid means of evaluating the water quality. This assessment highlights the various processes that affect groundwater quality. The method generates output that is easier to interpret than from traditional statistical methods. The information is extracted from the activation maps without significant loss of information. The method is proposed for assessing water quality in hydrogeochemically complex areas, where large numbers of observations are made.


Subject(s)
Desert Climate , Geographic Information Systems , Neural Networks, Computer , Soil , Water Supply , Quality Control , Water Pollutants/analysis
19.
Pest Manag Sci ; 58(8): 784-90, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12192902

ABSTRACT

Principal component analysis (PCA) was applied to the gas chromatographic data obtained from 23 different greenhouse trials. This was used to establish which factors, including application technique (very small, small, medium and large drop-size), crop characteristics (short/tall, thin/dense) and pattern application of the operator (walking towards or away from the treated area) are relevant to the dermal exposure levels of greenhouse applicators. The results showed that the highest exposure by pesticides during field applications in greenhouses, in the climatic conditions and in the crop conditions typical of a southern European country, occurs on the lower legs and front thighs of the applicators. Similar results were obtained by hierarchical cluster analysis (HCA). Drop-size seems to be very important in determining total exposure, while height and density of crops have little influence on total exposure under the conditions of the present study. No pesticide type is a major factor in total exposure. The application of multiple regression analysis (MRA) allowed assessment of the relationships between the pesticide exposure of the less affected parts of the body with the most affected parts.


Subject(s)
Agriculture , Occupational Exposure , Pesticides/analysis , Skin/chemistry , Chromatography, Gas , Climate , Humans , Occupational Exposure/prevention & control , Occupational Exposure/standards , Protective Clothing , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...