Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 242(2): 610-625, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402521

ABSTRACT

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Subject(s)
Fusarium , Genome, Fungal , Segmental Duplications, Genomic , Fusarium/genetics , Host Specificity , Genomics , Plant Diseases/genetics , Plant Diseases/microbiology
2.
Front Plant Sci ; 13: 1037030, 2022.
Article in English | MEDLINE | ID: mdl-36714772

ABSTRACT

Pattern-triggered immunity (PTI) in plants is mediated by cell surface-localized pattern recognition receptors (PRRs) upon perception of microbe-associated molecular pattern (MAMPs). MAMPs are conserved molecules across microbe species, or even kingdoms, and PRRs can confer broad-spectrum disease resistance. Pep-13/25 are well-characterized MAMPs in Phytophthora species, which are renowned devastating oomycete pathogens of potato and other plants, and for which genetic resistance is highly wanted. Pep-13/25 are derived from a 42 kDa transglutaminase GP42, but their cognate PRR has remained unknown. Here, we genetically mapped a novel surface immune receptor that recognizes Pep-25. By using effectoromics screening, we characterized the recognition spectrum of Pep-13/25 in diverse Solanaceae species. Response to Pep-13/25 was predominantly found in potato and related wild tuber-bearing Solanum species. Bulk-segregant RNA sequencing (BSR-Seq) and genetic mapping the response to Pep-25 led to a 0.081 cM region on the top of chromosome 3 in the wild potato species Solanum microdontum subsp. gigantophyllum. Some BAC clones in this region were isolated and sequenced, and we found the Pep-25 receptor locates in a complex receptor-like kinase (RLK) locus. This study is an important step toward the identification of the Pep-13/25 receptor, which can potentially lead to broad application in potato and various other hosts of Phytophthora species.

3.
New Phytol ; 232(3): 1368-1381, 2021 11.
Article in English | MEDLINE | ID: mdl-34339518

ABSTRACT

Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Disease Resistance/genetics , Plant Diseases , Plant Proteins/genetics
4.
Methods Mol Biol ; 1578: 337-353, 2017.
Article in English | MEDLINE | ID: mdl-28220439

ABSTRACT

In modern resistance breeding, effectors have emerged as tools for accelerating and improving the identification of immune receptors. Effector-assisted breeding was pioneered for identifying resistance genes (R genes) against Phytophthora infestans in potato (Solanum tuberosum). Here we show that effectoromics approaches are also well suitable for identifying pathogen recognition receptors (PRRs) that recognize apoplastic effectors. To detect genotypes that recognize apoplastic proteins of P. infestans, routine agroinfiltration and potato virus X (PVX) agroinfection methods can be applied. In addition, protein infiltrations are feasible for assessing responses to apoplastic effectors and aid in confirming results obtained from the aforementioned methods. Protocols for the effectoromics pipeline are provided, starting from phenotyping for effector responses, up to genotyping and PRR gene identification.


Subject(s)
Phytophthora infestans/pathogenicity , Plant Proteins/metabolism , Proteomics/methods , Receptors, Pattern Recognition/metabolism , Solanum tuberosum/parasitology , Chromosome Mapping , Disease Resistance , Genotype , Plant Breeding , Plant Proteins/genetics , Receptors, Pattern Recognition/genetics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism
5.
New Phytol ; 212(4): 888-895, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27582271

ABSTRACT

888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.


Subject(s)
Oomycetes/metabolism , Proteins/metabolism , Amino Acid Sequence , Disease Resistance , Plant Diseases/microbiology , Plants/immunology , Plants/microbiology , Proteins/chemistry
6.
BMC Res Notes ; 6: 333, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23965285

ABSTRACT

BACKGROUND: The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. METHODS: The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. RESULTS: An endo-1,4-ß-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-ß-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The K(m) and k(cat) values of this enzyme on guar gum were 2.074 mg ml(-1) and 50.87 s(-1), respectively, which is similar to other mannanases. CONCLUSION: This work is the first study of an endo-1,4-ß-mannanase from an insect using this expression system. Due to this enzyme's importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-ß-mannanase to decrease the economic losses stemming from this insect.


Subject(s)
Cloning, Molecular , Coffee/parasitology , Insect Proteins/metabolism , Mannosidases/metabolism , Weevils/enzymology , Amino Acid Sequence , Animals , Chromatography, Thin Layer , Cloning, Molecular/methods , Electrophoresis, Polyacrylamide Gel , Fruit , Galactans/metabolism , Galactose/analogs & derivatives , Host-Parasite Interactions , Hydrogen-Ion Concentration , Hydrolysis , Insect Proteins/genetics , Insect Proteins/isolation & purification , Kinetics , Mannans/metabolism , Mannosidases/genetics , Mannosidases/isolation & purification , Molecular Weight , Oligosaccharides/metabolism , Pichia/genetics , Plant Gums/metabolism , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Substrate Specificity , Weevils/genetics
7.
BMC Res Notes ; 5: 23, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22233686

ABSTRACT

BACKGROUND: The coffee berry borer, Hypothenemus hampei, reproduces and feeds exclusively on the mature endosperm of the coffee seed, which has a cell wall composed mainly of a heterogeneous mixture of hemicellulose polysaccharides, including arabinoxylans. Xylanases are digestive enzymes responsible for the degradation of xylan based polymers, hydrolyzing them into smaller molecules that are easier to assimilate by insects. We report the cloning, expression and enzymatic characterization of a xylanase gene that was identified in the digestive tract of the coffee berry borer. METHODS: The complete DNA sequence encoding a H. hampei xylanase (HhXyl) was obtained using a genome walking technique in a cDNA library derived from the borer digestive tract. The XIP-I gene was amplified from wheat (Triticum aestivum variety Soisson). A Pichia pastoris expression system was used to express the recombinant form of these enzymes. The xylanase activity and XIP-I inhibitory activity was quantified by the 3,5-dinitrosalicylic (DNS). The biological effects of XIP-I on borer individuals were evaluated by providing an artificial diet enriched with the recombinant XIP-I protein to the insects. RESULTS: The borer xylanase sequence contains a 951 bp open reading frame that is predicted to encode a 317-amino acid protein, with an estimated molecular weight of 34.92 kDa and a pI of 4.84. Bioinformatic analysis revealed that HhXyl exhibits high sequence homology with endo-ß-D-xylanases of Streptomyces bingchenggensis from glycosyl hydrolase 10 (GH10). The recombinant xylanase showed maximal activity at pH 5.5 and 37°C. XIP-I expressed as a recombinant protein inhibited HhXyl activity in vitro and caused individual H. hampei mortality in bioassays when included as a supplement in artificial diets. CONCLUSION: A xylanase from the digestive tract of the coffee berry borer was identified and functionally characterized. A xylanase inhibitor protein, XIP-I, from wheat was shown to be a potent inhibitor of this xylanase, suggesting that its deployment has potential as a strategy to control coffee berry borer colonization of coffee plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...