Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 163: 114828, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37163783

ABSTRACT

Maslinic acid (MA) is a natural pentacyclic triterpenoid with inherent antitumor activity which has a very low solubility in water. MA solid lipid nanoparticles (SLNs) were prepared using Poloxamer 407 and Dicarboxylic acid-Poloxamer 407 as surfactants. Both MA SLNs are monodisperse, with sizes around 130 nm, and stable. Curcumin has been encapsulated in both types of nanoparticles without altering their colloidal properties. Moreover, SLNs greatly improve the solubility of MA and Curcumin. The cytotoxicity of MA and SLNs has been evaluated in BxPC3 human pancreatic cancer cells, MCF7 human breast cancer cells, and in a human fibroblast primary cell line. MA shows higher cytotoxic effect in BxPC3 and MCF7 cancer cells than in human primary fibroblasts. Nile Red loaded MA SLNs are quickly uptaken by BxPC3 and MCF7 cells, and show different cytoplasmic distributions depending on the cellular line. The oral or intravenous administration of MA SLNs in mice does not report any toxic effect, and the intravenous administration of fluorescent MA SLNs shows a homogeneous distribution in mice, without site-specific accumulation. Results suggest the great potential of MA SLNs as nanocarriers of anticancer drugs and as promising targeted theranostic nanodevices.


Subject(s)
Antineoplastic Agents , Curcumin , Nanoparticles , Humans , Mice , Animals , Curcumin/pharmacology , Tissue Distribution , Lipids/chemistry , Poloxamer , Nanoparticles/chemistry , Drug Carriers/chemistry , Particle Size
2.
Adv Colloid Interface Sci ; 314: 102871, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36958181

ABSTRACT

Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.


Subject(s)
Nanoparticles , Neoplasms , Humans , Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Liposomes , Neoplasms/drug therapy
3.
Drug Deliv ; 29(1): 1971-1982, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35762633

ABSTRACT

Maslinic acid (MA) is a plant-derived, low water-soluble compound with antitumor activity. We have formulated MA in the form of solid lipid nanoparticles (SLNs) with three different shell compositions: Poloxamer 407 (PMA), dicarboxylic acid-Poloxamer 407 (PCMA), and HA-coated PCMA (PCMA-HA). These SLNs improved the solubility of MA up to 7.5 mg/mL, are stable in a wide range of pH, and increase the bioaccessibility of MA after in vitro gastrointestinal (GI) digestion. Gastrointestinal digested SLNs afforded MA delivery across in vitro gut barrier models (21 days old Caco-2 and mucus-producing Caco-2/HT29-MTX co-cultures). The cellular fraction of Caco-2/HT29-MTX co-cultures retained more MA from GI digested PCMA-HA than the Caco-2 monolayers. The concentration of MA reached in the basolateral chamber inhibited growth of pancreatic cancer cells, BxPC3. Finally, confocal microscopy images provided evidence that Nile Red incorporated in MA SLNs was capable of crossing Caco-2 monolayers to be taken up by basolaterally located BxPC3 cells. We have demonstrated that SLNs can be used as nanocarriers of hydrophobic antitumor compounds and that these SLNs are suitable for oral consumption and delivery of the bioactive across the gut barrier.


Subject(s)
Lipids , Poloxamer , Triterpenes , Administration, Oral , Caco-2 Cells , Humans , Lipids/chemistry , Liposomes , Nanoparticles , Permeability , Triterpenes/administration & dosage
4.
Food Chem ; 383: 132330, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35219153

ABSTRACT

Liquid lipid nanocapsules are oil droplets surrounded by a protective shell, which enable high load and allow controlled delivery of lipophilic compounds. However, their use in food formulations requires analysing their digestibility and interaction with mucin. Here, serum albumins and hyaluronic acid shelled olive oil nanocapsules are analysed to discern differences between human and bovine variants, the latter usually used as model system. Interfacial interaction of albumins and hyaluronic acid reveals that human albumin presents limited conformational changes upon adsorption, which increase by complexation with the polysaccharide present at the interface. The latter also promotes hydrophobic interactions with mucin, especially at pH 3 and protects albumin interfacial layer under in vitro gastric digestion. The interfacial unfolding induced in human albumin by hyaluronic acid facilitates in vitro lipolysis while its limited conformational changes provide the largest protection against in vitro lipolysis.


Subject(s)
Nanocapsules , Emulsions/chemistry , Humans , Hyaluronic Acid , Mucins , Nanocapsules/chemistry , Serum Albumin, Bovine , Serum Albumin, Human
5.
Food Chem ; 378: 132132, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35045370

ABSTRACT

Oleogels have been proposed as suitable systems for the encapsulation and delivery of lipophilic bioactive compounds. This work aimed to produce stable nanoemulsions of gelled-oil particles using monoglyceride (MG) oleogels loaded with curcumin. High-speed homogenization followed by ultrasonication was used for obtaining colloidal dispersions. The effects of ultrasonication processing parameters and formulation were evaluated to optimize particle size, polydispersity index (PDI), and stability during storage. All sonication parameters had a significant effect on particle size and PDI. A Pluronic F-68 + Tween 80 surfactant mixture with the lowest oleogel/aqueous phase ratio (5/95) produced nanoemulsions which were at least 10-month stable. The nanoemulsions showed a higher encapsulation efficiency than the sample without the gelator (73.85-91.05% vs. 56.99%). Furthermore, it was corroborated that structuring oil particles with MG crystals produces a matrix that entraps curcumin molecules and slows down their release. These findings provide useful information for the development of new nutraceutical products.


Subject(s)
Curcumin , Delayed-Action Preparations , Emulsions , Organic Chemicals , Particle Size
6.
Adv Colloid Interface Sci ; 290: 102365, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33667972

ABSTRACT

One of the major applications of Serum Albumins is their use as delivery systems for lipophilic compounds in biomedicine. Their biomedical application is based on the similarity with Human Serum Albumin (HSA), as a fully biocompatible protein. In general, Bovine Serum Albumin (BSA) is treated as comparable to its human homologue and used as a model protein for fundamental studies since it is available in high amounts and well understood. This protein can act as a carrier for lipophilic compounds or as protective shell in an emulsion-based vehicle. Polysaccharides are generally included in these formulations in order to increase the stability and/or applicability of the carrier. In this review, the main biomedical applications of Albumins as drug delivery systems are first presented. Secondly, the differences between BSA and HSA are highlighted, exploring the similarities and differences between these proteins and their interaction with polysaccharides, both in solution and adsorbed at interfaces. Finally, the use of Albumins as emulsifiers for emulsion-based delivery systems, concretely as Liquid Lipid Nanocapsules (LLNs), is revised and discussed in terms of the differences encountered in the molecular structure and in the interfacial properties. The specific case of Hyaluronic Acid is considered as a promising additive with important applications in biomedicine. The literature works are thoroughly discussed highlighting similarities and differences between BSA and HSA and their interaction with polysaccharides encountered at different structural levels, hence providing routes to control the optimal design of delivery systems.


Subject(s)
Serum Albumin, Bovine , Serum Albumin , Emulsions , Humans , Polysaccharides , Serum Albumin, Human
7.
Food Chem ; 351: 129301, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33639433

ABSTRACT

A major challenge in delivering curcumin effectively to the gut is its low solubility. One interesting approach to increase curcumin bioaccessibility is its emulsification. Here, we present curcumin-loaded liquid lipid nanocapsules (LLNs), obtained through olive oil emulsification, in which LLNs are coated by a protective shell composed of Bovine Serum Albumin (BSA) and hyaluronic acid (HA). Bioaccessibility of curcumin is evaluated following a standard in vitro digestion protocol. The presence of HA in the shell increases the amount of curcumin retained in the LLNs after in vitro gastric digestion from ~25% to ~85%. This protective effect occurs when HA binds to BSA in the shell. Moreover, this binding appears to be reinforced under gastric conditions, hence evidencing the crucial role of interfacial composition in protecting encapsulated curcumin. Interfacial engineering of nanoemulsions provides a route to improve the bioaccessibility of encapsulated curcumin at different stages in the gut.


Subject(s)
Curcumin/pharmacokinetics , Digestion , Emulsions/chemistry , Hyaluronic Acid/pharmacology , Biological Availability , Humans , Lipids , Nanocapsules/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...