Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(31)2022 06 13.
Article in English | MEDLINE | ID: mdl-35576919

ABSTRACT

Titanium dioxide is a key material in many fields, including technological, industrial and biomedical applications. Many of these applications are related to the surface reactivity of TiO2and involve its reducibility properties. Recently titania has been banned as a food additive due to its (nano)toxicity, and the release of reactive oxygen species plays a crucial role in many toxicological mechanisms. Determining chemical descriptors that account for the extension of reduction is necessary to understand such processes and necessary for predicting the reactivity of an unknown system. In the present work, we compute a set of chemical descriptors for selected surfaces of anatase and rutile TiO2. The aim is twofold: we want to provide chemically meaningful information on the surface reactivity, and benchmark the descriptors for twoab initioschemes. To do so, we compute the oxygen vacancy formation energy, and the corresponding electronic structure, in four slab models with two different computational schemes (DFT+Uand DFTB). In this way, we characterize the robustness of the dataset, with the purpose of scaling up to more realistic model systems such as nanoparticles or explicit solvent, which are too computationally demanding for state-of-the-art density functional theory approaches.


Subject(s)
Nanoparticles , Oxygen , Oxygen/chemistry , Solvents
2.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35055235

ABSTRACT

Titanium dioxide nanoparticles have risen concerns about their possible toxicity and the European Food Safety Authority recently banned the use of TiO2 nano-additive in food products. Following the intent of relating nanomaterials atomic structure with their toxicity without having to conduct large-scale experiments on living organisms, we investigate the aggregation of titanium dioxide nanoparticles using a multi-scale technique: starting from ab initio Density Functional Theory to get an accurate determination of the energetics and electronic structure, we switch to classical Molecular Dynamics simulations to calculate the Potential of Mean Force for the connection of two identical nanoparticles in water; the fitting of the latter by a set of mathematical equations is the key for the upscale. Lastly, we perform Brownian Dynamics simulations where each nanoparticle is a spherical bead. This coarsening strategy allows studying the aggregation of a few thousand nanoparticles. Applying this novel procedure, we find three new molecular descriptors, namely, the aggregation free energy and two numerical parameters used to correct the observed deviation from the aggregation kinetics described by the Smoluchowski theory. Ultimately, molecular descriptors can be fed into QSAR models to predict the toxicity of a material knowing its physicochemical properties, enabling safe design strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...