Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 26(7): 2041-2062, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28012227

ABSTRACT

Identifying the genes underlying adaptation, their distribution in genomes and the evolutionary forces shaping genomic diversity are key challenges in evolutionary biology. Very few studies have investigated the abundance and distribution of selective sweeps in species with high-quality reference genomes, outside a handful of model species. Pathogenic fungi are tractable eukaryote models for investigating the genomics of adaptation. By sequencing 53 genomes of two species of anther-smut fungi and mapping them against a high-quality reference genome, we showed that selective sweeps were abundant and scattered throughout the genome in one species, affecting near 17% of the genome, but much less numerous and in different genomic regions in its sister species, where they left footprints in only 1% of the genome. Polymorphism was negatively correlated with linkage disequilibrium levels in the genomes, consistent with recurrent positive and/or background selection. Differential expression in planta and in vitro, and functional annotation, suggested that many of the selective sweeps were probably involved in adaptation to the host plant. Examples include glycoside hydrolases, pectin lyases and an extracellular membrane protein with CFEM domain. This study thus provides candidate genes for being involved in plant-pathogen interaction (effectors), which have remained elusive for long in this otherwise well-studied system. Their identification will foster future functional and evolutionary studies, in the plant and in the anther-smut pathogens, being model species of natural plant-pathogen associations. In addition, our results suggest that positive selection can have a pervasive impact in shaping genomic variability in pathogens and selfing species, broadening our knowledge of the occurrence and frequency of selective events in natural populations.


Subject(s)
Adaptation, Physiological/genetics , Basidiomycota/genetics , Evolution, Molecular , Plants/microbiology , Selection, Genetic , Basidiomycota/pathogenicity , Chromosome Mapping , DNA, Fungal/genetics , Genome, Fungal , Host-Pathogen Interactions , Linkage Disequilibrium , Plant Diseases , Polymorphism, Single Nucleotide
2.
Fungal Genet Biol ; 47(8): 693-706, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20460164

ABSTRACT

We studied the mode of reproduction and its evolution in the fungal subgenus Penicillium Biverticillium using phylogenetic and experimental approaches. We sequenced mating type (MAT) genes and nuclear DNA fragments in sexual and putatively asexual species. Examination of the concordance between individual trees supported the recognition of the morphological species. MAT genes were detected in two putatively asexual species and were found to evolve mostly under purifying selection, although high substitution rates were detected at some sites in some clades. The first steps of sexual reproduction could be induced under controlled conditions in one of the two species, although no mature cleistothecia were produced. Altogether, these findings suggest that the asexual Penicillium species may have lost sex only very recently and/or that the MAT genes are involved in other functions. An ancestral state reconstruction analysis indicated several events of putative sex loss in the genus. Alternatively, it is possible that the supposedly asexual Penicillium species may have retained a cryptic sexual stage.


Subject(s)
Cell Division , Genes, Mating Type, Fungal , Penicillium/growth & development , Penicillium/genetics , Phylogeny , Recombination, Genetic , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , Evolution, Molecular , Molecular Sequence Data , Sequence Analysis, DNA
3.
Mol Ecol ; 19(2): 292-306, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20041992

ABSTRACT

Numerous genes in diverse organisms have been shown to be under positive selection, especially genes involved in reproduction, adaptation to contrasting environments, hybrid inviability, and host-pathogen interactions. Looking for genes under positive selection in pathogens has been a priority in efforts to investigate coevolution dynamics and to develop vaccines or drugs. To elucidate the functions involved in host specialization, here we aimed at identifying candidate sequences that could have evolved under positive selection among closely related pathogens specialized on different hosts. For this goal, we sequenced c. 17,000-32,000 ESTs from each of four Microbotryum species, which are fungal pathogens responsible for anther smut disease on host plants in the Caryophyllaceae. Forty-two of the 372 predicted orthologous genes showed significant signal of positive selection, which represents a good number of candidate genes for further investigation. Sequencing 16 of these genes in 9 additional Microbotryum species confirmed that they have indeed been rapidly evolving in the pathogen species specialized on different hosts. The genes showing significant signals of positive selection were putatively involved in nutrient uptake from the host, secondary metabolite synthesis and secretion, respiration under stressful conditions and stress response, hyphal growth and differentiation, and regulation of expression by other genes. Many of these genes had transmembrane domains and may therefore also be involved in pathogen recognition by the host. Our approach thus revealed fruitful and should be feasible for many non-model organisms for which candidate genes for diversifying selection are needed.


Subject(s)
Basidiomycota/genetics , Host-Pathogen Interactions/genetics , Selection, Genetic , Caryophyllaceae/microbiology , Cluster Analysis , DNA, Fungal/genetics , Expressed Sequence Tags , Gene Library , Genes, Fungal , Plant Diseases/microbiology , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
4.
Syst Biol ; 57(4): 613-27, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18709599

ABSTRACT

Phylogenies involving nonmodel species are based on a few genes, mostly chosen following historical or practical criteria. Because gene trees are sometimes incongruent with species trees, the resulting phylogenies may not accurately reflect the evolutionary relationships among species. The increase in availability of genome sequences now provides large numbers of genes that could be used for building phylogenies. However, for practical reasons only a few genes can be sequenced for a wide range of species. Here we asked whether we can identify a few genes, among the single-copy genes common to most fungal genomes, that are sufficient for recovering accurate and well-supported phylogenies. Fungi represent a model group for phylogenomics because many complete fungal genomes are available. An automated procedure was developed to extract single-copy orthologous genes from complete fungal genomes using a Markov Clustering Algorithm (Tribe-MCL). Using 21 complete, publicly available fungal genomes with reliable protein predictions, 246 single-copy orthologous gene clusters were identified. We inferred the maximum likelihood trees using the individual orthologous sequences and constructed a reference tree from concatenated protein alignments. The topologies of the individual gene trees were compared to that of the reference tree using three different methods. The performance of individual genes in recovering the reference tree was highly variable. Gene size and the number of variable sites were highly correlated and significantly affected the performance of the genes, but the average substitution rate did not. Two genes recovered exactly the same topology as the reference tree, and when concatenated provided high bootstrap values. The genes typically used for fungal phylogenies did not perform well, which suggests that current fungal phylogenies based on these genes may not accurately reflect the evolutionary relationships among species. Analyses on subsets of species showed that the phylogenetic performance did not seem to depend strongly on the sample. We expect that the best-performing genes identified here will be very useful for phylogenetic studies of fungi, at least at a large taxonomic scale. Furthermore, we compare the method developed here for finding genes for building robust phylogenies with previous ones and we advocate that our method could be applied to other groups of organisms when more complete genomes are available.


Subject(s)
Classification/methods , Phylogeny , Fungi/classification , Fungi/genetics , Genes, Fungal/genetics , Likelihood Functions , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...