Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 290: 118064, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34481302

ABSTRACT

Acid mine drainage (AMD) is a serious environmental problem worldwide that requires efficient and sustainable remediation technologies including the use of biological mechanisms. A key challenge for AMD bioremediation is to provide optimal conditions for microbial-mediated immobilisation of trace metals. Although organic carbon and oxygen can enhance treatment efficiency, the effect on microbial communities is unclear. In this study, surface sediments from a natural wetland with proven efficiency for AMD bioremediation were artificially exposed to oxygen (by aeration) and/or organic carbon (in the form of mixed organic acids) and incubated under laboratory conditions. In addition to measuring changes in water chemistry, a metagenomics approach was used to determine changes in sediment bacterial, archaeal and fungal community structure, and functional gene abundance. The addition of organic carbon produced major changes in the abundance of microorganisms related to iron and sulfur metabolism (including Geobacter and Pelobacter) and increased levels of particulate metals via sulfate reduction. Aeration resulted in an increase in Sideroxydans abundance but no significant changes in metal chemistry were observed. The study concludes that the utilisation of organic carbon by microorganisms is more important for achieving efficient AMD treatment than the availability of oxygen, yet the combination of oxygen with organic carbon addition did not inhibit the improvements to water quality.


Subject(s)
Microbiota , Wetlands , Acids , Mining , Water Quality
2.
Chemosphere ; 231: 432-441, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146135

ABSTRACT

Natural recovery and remediation of acid mine drainage (AMD) reduces the generation of acidity and transport of trace elements in the runoff. A natural wetland that receives and remediates AMD from an abandoned copper mine at Parys Mountain (Anglesey, UK) was investigated for better understanding of the remediation mechanisms. Water column concentrations of dissolved Fe and S species, trace metal (loid)s and acidity decreased markedly as the mine drainage stream passed through the wetland. The metal (loid)s were removed from the water column by deposition into the sediment. Fe typically accumulated to higher concentrations in the surface layers of sediment while S and trace metal (loid)s were deposited at higher concentration within deeper (20-50 cm) sediments. High resolution X-ray fluorescence scans of sediment cores taken at three sites along the wetland indicates co-immobilization of Zn, Cu and S with sediment depth as each element showed a similar core profile. To examine the role of bacteria in sediment elemental deposition, marker genes for Fe and S metabolism were quantified. Increased expression of marker genes for S and Fe oxidation was detected at the same location within the middle of the wetland where significant decrease in SO42- and Fe2+ was observed and where generation of particulate Fe occurs. This suggests that the distribution and speciation of Fe and S that mediates the immobilization and deposition of trace elements within the natural wetland sediments is mediated in part by bacterial activity.


Subject(s)
Environmental Monitoring , Sulfur/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Wetlands , Acids , Environmental Pollution , Geologic Sediments/microbiology , Iron/chemistry , Metals/analysis , Mining , Rivers
3.
Front Microbiol ; 9: 1445, 2018.
Article in English | MEDLINE | ID: mdl-30013541

ABSTRACT

Natural wetlands are known to play an important role in pollutant remediation, such as remediating acid mine drainage (AMD) from abandoned mine sites. However, many aspects of the microbiological mechanisms underlying AMD remediation within wetlands are poorly understood, including the role and composition of associated microbial communities. We have utilized an AMD-polluted river-wetland system to perform rRNA sequence analysis of microbial communities that play a role in biogeochemical activities that are linked to water quality improvement. Next-generation sequencing of bacterial 16S rRNA gene amplicons from river and wetland sediment samples identified variation in bacterial community structure and diversity on the basis of dissolved and particulate metal concentrations, sediment metal concentrations and other water chemistry parameters (pH and conductivity), and wetland plant presence. Metabolic reconstruction analysis allowed prediction of relative abundance of microbial metabolic pathways and revealed differences between samples that cluster on the basis of the severity of AMD pollution. Global metabolic activity was predicted to be significantly higher in unpolluted and wetland sediments in contrast to polluted river sediments, indicating a metabolic stress response to AMD pollution. This is one of the first studies to explore microbial community structure dynamics within a natural wetland exposed to AMD and our findings indicate that wetland ecosystems play critical roles in maintaining diversity and metabolic structure of sediment microbial communities subject to high levels of acidity and metal pollution. Moreover, these microbial communities are predicted to be important for the remediation action of the wetland.

SELECTION OF CITATIONS
SEARCH DETAIL