Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294273, 2023.
Article in English | MEDLINE | ID: mdl-37948383

ABSTRACT

Swine dysentery (SD) is a worldwide production-limiting disease of growing-finishing pigs in commercial farms. The importance of the large intestinal microbiota in the swine dysentery pathogenesis has been established, but not well characterized. The objective of this study was to characterize the fecal bacterial microbiota of pigs immediately prior to developing clinical signs of swine dysentery. A total of 60 fecal samples were collected from 15 pigs with SD. Sampling times included a time point prior to SD (d0, n=15), 2 days before mucohaemorrhagic diarrhea was observed (d-2SD, n=15), 1 day before mucohaemorrhagic diarrhea was observed (d-1SD, n=15), and the day when pigs developed mucohemorragic diarrhea (MHD, n=15). Sequencing of cpn60 amplicons was used to profile the microbiome, and analyses were performed on QIIME2. Increased Chao1 index in d-1SD and MHD samples when compared to the d0 was the only change observed in alpha diversity. No differences between sampling times on beta diversity (Bray-Curtis dissimilarity) were found. Although a small sample size was investigated, differential abundance analysis revealed that Alistipes dispar and Parabacteroides gordonii were increased in MHD fecal samples when compared to d-2SD and d-1SD. It is suggested that these taxa may play a role in the pathogenesis of SD, which is known to require the presence of Brachyspira spp. and an anaerobe for severe disease development.


Subject(s)
Dysentery , Microbiota , Spirochaetales Infections , Swine Diseases , Swine , Animals , Swine Diseases/microbiology , Diarrhea/microbiology , Bacteria , Feces/microbiology , Dysentery/microbiology
2.
Porcine Health Manag ; 7(1): 48, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34429170

ABSTRACT

BACKGROUND: Fecal calprotectin is largely applied as a non-invasive intestinal inflammation biomarker in human medicine. Previous studies in pigs investigated the levels of fecal calprotectin in healthy animals only. Thus, there is a knowledge gap regarding its application during infectious diarrhea. This study investigated the usefulness of fecal calprotectin as a biomarker of intestinal inflammation in Brachyspira hyodysenteriae and Salmonella Typhimurium infected pigs. RESULTS: Fecal samples from pigs with colitis (n = 18) were collected from animals experimentally inoculated with B. hyodysenteriae (n = 8) or from sham-inoculated controls (n = 3). Fecal samples from pigs with enteritis (n = 14) were collected from animals inoculated with Salmonella enterica serovar Typhimurium (n = 8) or from sham-inoculated controls (n = 4). For both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 2 = watery feces; 3 = mucoid diarrhea; and 4 = bloody diarrhea. Fecal calprotectin levels were assayed using a sandwich ELISA, a turbidimetric immunoassay and a point-of-care dipstick test. Fecal calprotectin levels were greater in colitis samples scoring 4 versus ≤ 4 using ELISA, and in feces scoring 3 and 4 versus ≤ 1 using immunoturbidimetry (P < 0.05). No differences were found in calprotectin concentration among fecal scores for enteritis samples, regardless of the assay used. All samples were found below detection limits using the dipstick method. CONCLUSIONS: Fecal calprotectin levels are increased following the development of colitis, but do not significantly change due to enteritis. While practical, the use of commercially available human kits present sensitivity limitations. Further studies are needed to validate the field application of calprotectin as a marker of intestinal inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...