Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171888

ABSTRACT

Environmentally friendly agricultural production necessitates manipulation of microbe-plant interactions, requiring a better understanding of how farming practices influence soil microbiota. We studied the effect of conventional and organic treatment on soil bacterial richness, composition, and predicted functional potential. 16S rRNA sequencing was applied to soils from adjacent plots receiving either a synthetic or organic fertilizer, where two crops were grown within treatment, homogenizing for differences in soil properties, crop, and climate. Conventional fertilizer was associated with a decrease in soil pH, an accumulation of Ag, Mn, As, Fe, Co, Cd, and Ni; and an enrichment of ammonia oxidizers and xenobiotic compound degraders (e.g., Candidatus Nitrososphaera, Nitrospira, Bacillus, Pseudomonas). Soils receiving organic fertilization were enriched in Ti (crop biostimulant), N, and C cycling bacteria (denitrifiers, e.g., Azoarcus, Anaerolinea; methylotrophs, e.g., Methylocaldum, Methanosarcina), and disease-suppression (e.g., Myxococcales). Some predicted functions, such as glutathione metabolism, were slightly, but significantly enriched after a one-time manure application, suggesting the enhancement of sulfur regulation, nitrogen-fixing, and defense of environmental stressors. The study highlights that even a single application of organic fertilization is enough to originate a rapid shift in soil prokaryotes, responding to the differential substrate availability by promoting soil health, similar to recurrent applications.

2.
PLoS One ; 12(6): e0178755, 2017.
Article in English | MEDLINE | ID: mdl-28594872

ABSTRACT

In this study, 16S rRNA gene sequencing was used to characterize the changes in taxonomic composition and environmental factors significantly influencing bacterial community structure across an annual cycle in the Estuary of Bilbao as well as its tributaries. In spite of this estuary being small and characterized by a short residence time, the environmental factors most highly correlated with the bacterial community mirrored those reported to govern larger estuaries, specifically salinity and temperature. Additionally, bacterial community changes in the estuary appeared to vary with precipitation. For example, an increase in freshwater bacteria (Comamonadaceae and Sphingobacteriaceae) was observed in high precipitation periods compared to the predominately marine-like bacteria (Rhodobacterales and Oceanospirillales) that were found in low precipitation periods. Notably, we observed a significantly higher relative abundance of Comamonadaceae than previously described in other estuaries. Furthermore, anthropic factors could have an impact on this particular estuary's bacterial community structure. For example, ecosystem changes related to the channelization of the estuary likely induced a low dissolved oxygen (DO) concentration, high temperature, and high chlorophyll concentration period in the inner euhaline water in summer (samples with salinity >30 ppt). Those samples were characterized by a high abundance of facultative anaerobes. For instance, OTUs classified as Cryomorphaceae and Candidatus Aquiluna rubra were negatively associated with DO concentration, while Oleiphilaceae was positively associated with DO concentration. Additionally, microorganisms related to biological treatment of wastewater (e.g Bdellovibrio and Zoogloea) were detected in the samples immediately downstream of the Bilbao Wastewater Treatment Plant (WWTP). There are several human activities planned in the region surrounding the Estuary of Bilbao (e.g. sediment draining, architectural changes, etc.) which will likely affect this ecosystem. Therefore, the addition of bacterial community profiling and diversity analysis into the estuary's ongoing monitoring program would provide a more comprehensive view of the ecological status of the Estuary of Bilbao.


Subject(s)
Ecosystem , Estuaries , Fresh Water/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Environmental Monitoring , RNA, Ribosomal, 16S/genetics , Water Microbiology
3.
Ecol Evol ; 6(6): 1809-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27087935

ABSTRACT

The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired-end (PE; 2 × 150 bp) technology. To critically evaluate the method's performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual-based diet analysis methods. The high sensitivity and semi-quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR-based results. This molecular approach provides an alternative cost and time effective tool for food-web analysis.

4.
Sci Rep ; 5: 14219, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26391668

ABSTRACT

Three very different records are combined here to reconstruct the evolution of environments in the Cantabrian Region during the Upper Pleistocene, covering ~35.000 years. Two of these records come from Antoliñako Koba (Bizkaia, Spain), an exceptional prehistoric deposit comprising 9 chrono-cultural units (Aurignacian to Epipaleolithic). The palaeoecological signal of small-vertebrate communities and red deer stable-isotope data (δ(13)C and δ(15)N) from this mainland site are contrasted to marine microfaunal evidence (planktonic and benthic foraminifers, ostracods and δ(18)O data) gathered at the southern Bay of Biscay. Many radiocarbon dates for the Antoliña's sequence, made it possible to compare the different proxies among them and with other well-known North-Atlantic records. Cooling and warming events regionally recorded, mostly coincide with the climatic evolution of the Upper Pleistocene in the north hemisphere.


Subject(s)
Aquatic Organisms , Environment , Isotopes , Radiometric Dating , Vertebrates , Animals , Carbon Isotopes , Nitrogen Isotopes , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...