Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(34): 9089-9095, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108746

ABSTRACT

Aluminum thin films were deposited on a 3D prototype employing the direct current magnetron sputtering technique to fabricate a lightweight 3D first surface mirror. Before the aluminizing, the surface of the prototypes was evaluated with interferometry and atomic force microscope (AFM). The thin films were characterized using profilometry, UV-Vis spectroscopy, x-ray diffraction, AFM, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. High adherence and homogeneous deposition of the aluminum's thin films were achieved. In addition, the purity of the material was confirmed by XPS analysis.

2.
Appl Opt ; 59(13): D104-D110, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32400630

ABSTRACT

We report the application of cyclic voltammetry and absorption spectroscopy to the characterization and study of the stability of silver colloids in water. The samples are prepared via chemical reduction and the reactions are catalyzed by irradiation with white light. The electrochemical response is related to the characteristic sample surface plasmon resonance (SPR) in the UV-visible absorption spectra. Cyclic voltammetry shows a characteristic reduction peak whose position is specific to each analyzed sample. Optical analysis of a colloid precursor during a 12 h time span, under low-power white-light irradiation, shows that nanoparticles undergo change in size and surface state (absorption bands splitting and inversion) to attain the "stable" colloidal form. While the absorption spectrum bands of the precursor return almost periodically to similar positions, the cyclic voltammogram characteristic reduction peak is displaced as a function of time. Finally, we follow the SPR changes of one "stable" colloid being subjected to electrolysis, heating, and sunlight irradiation, for environmental remediation purposes. Sunlight exposure produces the most significant SPR intensity drop, but the electrochemical technique shows itself promising as well.

SELECTION OF CITATIONS
SEARCH DETAIL
...