Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1803: 148227, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36592802

ABSTRACT

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Subject(s)
Epilepsy , Status Epilepticus , Rats , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Kainic Acid/pharmacology , Fluorodeoxyglucose F18/metabolism , Dapsone/pharmacology , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Status Epilepticus/drug therapy , Seizures/metabolism , Hippocampus/metabolism , Epilepsy/metabolism
2.
Brain Res ; 1769: 147621, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34403661

ABSTRACT

OBJECTIVE: Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS: Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS: FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS: PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Kainic Acid/pharmacology , Animals , Brain/drug effects , Electroencephalography , Fluorodeoxyglucose F18 , Hippocampus/metabolism , Hippocampus/pathology , Male , Positron-Emission Tomography , Radiopharmaceuticals , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...