Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 112: 525-31, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25129777

ABSTRACT

The rheological properties of several ionotropic alginate hydrogels were investigated according to the nature of the divalent cation (Mn(2+), Co(2+), Cu(2+)) and the guluronic fraction of the alginate (HG and LG for "high G-content" and "low G-content"). Six hydrogels (Mn-LG, Mn-HG, Co-LG, Co-HG, Cu-LG and Cu-HG) were synthesized and studied by spectromechanical analyses. On one hand, Cu-HG, Cu-LG and Co-HG behaved as viscoelastic solids: the elastic contribution was higher than the dissipative component in all the frequency range studied (G'>G"). No flow zone (G">G') was detected even at very low values of the shearing frequency. On the other, Mn-HG, Mn-LG and Co-LG presented a spectromechanical behavior that resembled that observed classically for entangled polymers. Indeed, at high frequency, these latter materials could be compared to a viscoelastic solid but at low frequency, the flow zone was described and the viscous character became prevalent with finite relaxation time. Very good correlations with the microscopic structurations of the network were evidenced (rubbery vs. flow zone and fibrillar vs. complex morphology respectively).


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Rheology/methods , Cations , Cobalt/chemistry , Copper/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Manganese/chemistry
2.
Biomacromolecules ; 13(6): 1899-907, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22571325

ABSTRACT

The complexation of (1→4) linked α-L-guluronate (G) and ß-D-mannuronate (M) disaccharides with Mg(2+), Ca(2+), Sr(2+), Mn(2+), Co(2+), Cu(2+), and Zn(2+) cations have been studied with quantum chemical density functional theory (DFT)-based method. A large number of possible cation-diuronate complexes, with one and two GG or MM disaccharide units and with or without water molecules in the inner coordination shells have been considered. The computed bond distances, cation interaction energies, and molecular orbital composition analysis revealed that the complexation of the transition metal (TM) ions to the disaccharides occurs via the formation of strong coordination-covalent bonds. On the contrary, the alkaline earth cations form ionic bonds with the uronates. The unidentate binding is found to be the most favored one in the TM hydrated and water-free complexes. By removing water molecules, the bidentate chelating binding also occurs, although it is found to be energetically less favored by 1 to 1.5 eV than the unidentate one. A good correlation is obtained between the alginate affinity trend toward TM cations and the interaction energies of the TM cations in all studied complexes, which suggests that the alginate affinities are strongly related to the chemical interaction strength of TM cations-uronate complexes. The trend of the interaction energies of the alkaline earth cations in the ionic complexes is opposite to the alginate affinity order. The binding strength is thus not a limiting factor in the alginate gelation in the presence of alkaline earth cations at variance with the TM cations.


Subject(s)
Alginates/chemistry , Gels/chemistry , Quantum Theory , Uronic Acids/chemistry , Carbohydrate Conformation , Cations/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Molecular Sequence Data , Molecular Structure
3.
Biomacromolecules ; 13(1): 215-20, 2012 Jan 09.
Article in English | MEDLINE | ID: mdl-22172250

ABSTRACT

The morphologies of several ionotropic alginate hydrogels and aerogels were investigated by SAXS according to the nature of the divalent metal cation (Mn(2+), Co(2+), Zn(2+), Cu(2+)) and the guluronic fraction of the alginate. All alginate hydrogel and aerogel samples show isotropic small-angle X-ray scattering. Gelation results from cooperative associations of cations and chain segments and yields different nanostructures, that is, nanofibrillar morphology or multiple junction morphology, according to cation type and eventually mannuronic/guluronic ratio. Therefore, Mn and Cu gels present the same morphology whatever the guluronic ratio, whereas Co and Zn gels yield different nanostructures. In the size range investigated by SAXS (~10-200 Å), the structure of aerogels obtained by CO(2) supercritical drying is found to be inherited from the morphology of the parent hydrogel whatever the initial structural regime.


Subject(s)
Alginates/chemistry , Metals/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Alginates/ultrastructure , Cations, Divalent , Gels/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...