Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839970

ABSTRACT

Since the demonstration of p-type gallium nitride (GaN) through doping with substitutional magnesium (Mg) atoms1,2, rapid and comprehensive developments, such as blue light-emitting diodes, have considerably shaped our modern lives and contributed to a more carbon-neutral society3-5. However, the details of the interplay between GaN and Mg have remained largely unknown6-11. Here we observe that Mg-intercalated GaN superlattices can form spontaneously by annealing a metallic Mg film on GaN at atmospheric pressure. To our knowledge, this marks the first instance of a two-dimensional metal intercalated into a bulk semiconductor, with each Mg monolayer being intricately inserted between several monolayers of hexagonal GaN. Characterized as an interstitial intercalation, this process induces substantial uniaxial compressive strain perpendicular to the interstitial layers. Consequently, the GaN layers in the Mg-intercalated GaN superlattices exhibit an exceptional elastic strain exceeding -10% (equivalent to a stress of more than 20 GPa), among the highest recorded for thin-film materials12. The strain alters the electronic band structure and greatly enhances hole transport along the compression direction. Furthermore, the Mg sheets induce a unique periodic transition in GaN polarity, generating polarization-field-induced net charges. These characteristics offer fresh insights into semiconductor doping and conductivity enhancement, as well as into elastic strain engineering of nanomaterials and metal-semiconductor superlattices13.

2.
Opt Lett ; 49(4): 1073-1076, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359256

ABSTRACT

We report on the third harmonic generation (THG) in InSb semiconductor irradiated by a terahertz (THz) free electron laser (FEL). The conversion of 4 THz (wavelength 70 µm) FEL outputs into its third harmonic 12 THz was observed. We found that by tuning the sample temperature to 360 K, high conversion efficiency up to 1% can be obtained and is the highest in the THz and FIR regions below 10 THz. We also discuss the observed intensity dependence of the THG with the nonlinear order lower than 3 when the pumping intensity was high.

3.
Opt Lett ; 48(23): 6324-6327, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039258

ABSTRACT

The development of electromagnetic wave absorbers operating in the sub-terahertz (sub-THz) region is necessary in 6G communications. We designed and fabricated a sub-THz metamaterial absorber based on metal microcoils embedded and periodically arranged in a dielectric substrate. The microcoil parameters were optimized by calculating the electromagnetic response of the metamaterial using finite element analysis. An actual metamaterial was then fabricated based on the optimized parameters and characterized using THz time-domain spectroscopy. Our microcoil absorber exhibits an absorptance of >80% and a high shielding performance at about 250 GHz. The resonance frequency can be precisely adjusted by modifying the microcoil array dimensions.

4.
Chemphyschem ; 24(4): e202200618, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36287210

ABSTRACT

We report the water adsorption/desorption behavior and dynamic magnetic properties of the Pt-Cl chain complex [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] ⋅ 12H2 O (1). Upon heating 1 in a vacuum, we obtained the dehydrated form [{[Pt(en)2 ][PtCl2 (en)2 ]}3 ][{(MnCl5 )Cl3 }2 ] (1DH). The framework structures of 1 and 1DH are identical, and both complexes underwent slow magnetic relaxation. However, the magnetic relaxation times for 1DH were shorter than those for 1, meaning that the dynamic magnetic properties were controlled upon water vapor adsorption/desorption. From detailed analyses of the dynamic magnetic behavior, a phonon-bottleneck effect contributes to the magnetic relaxation processes. We discuss the mechanism for the changes in the magnetic relaxation processes upon dehydration in terms of the heat capacity and thermal conductivity.

5.
Sensors (Basel) ; 21(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34695944

ABSTRACT

This paper describes the design and development of a cylindrical super-oscillatory lens (CSOL) for applications in the sub-terahertz frequency range, which are especially ideal for industrial inspection of films using terahertz (THz) and millimeter waves. Product inspections require high resolution (same as inspection with visible light), long working distance, and long depth of focus (DOF). However, these are difficult to achieve using conventional THz components due to diffraction limits. Here, we present a numerical approach in designing a 100 mm × 100 mm CSOL with optimum properties and performance for 0.1 THz (wavelength λ = 3 mm). Simulations show that, at a focal length of 70 mm (23.3λ), the focused beam by the optimized CSOL is a thin line with a width of 2.5 mm (0.84λ), which is 0.79 times the diffraction limit. The DOF of 10 mm (3.3λ) is longer than that of conventional lenses. The results also indicate that the generation of thin line-shaped focal beam is dominantly influenced by the outer part of the lens.

6.
Sci Rep ; 11(1): 18129, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526558

ABSTRACT

Gallium nitride (GaN) is one of the most technologically important semiconductors and a fundamental component in many optoelectronic and power devices. Low-resistivity GaN wafers are in demand and actively being developed to improve the performance of vertical GaN power devices necessary for high-voltage and high-frequency applications. For the development of GaN devices, nondestructive characterization of electrical properties particularly for carrier densities in the order of 1019 cm-3 or higher is highly favorable. In this study, we investigated GaN single crystals with different carrier densities of up to 1020 cm-3 using THz time-domain ellipsometry in reflection configuration. The p- and s-polarized THz waves reflected off the GaN samples are measured and then corrected based on the analysis of multiple waveforms measured with a rotating analyzer. We show that performing such analysis leads to a ten times higher precision than by merely measuring the polarization components. As a result, the carrier density and mobility parameters can be unambiguously determined even at high conductivities.

SELECTION OF CITATIONS
SEARCH DETAIL
...