Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(45): 31374-31381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37961857

ABSTRACT

Cation migration coupled with oxygen vacancy formation is known to drive the layered to disordered spinel/rock-salt phase transformation in the high-Ni layered oxide cathodes of Li-ion batteries. However, the effect of different electronic states of oxygen vacancies on the cation migration still remains elusive. Here, we investigate Ni migration in delithiated Ni-rich Li0.5Ni0.8Mn0.1Co0.1O2 (hence Li0.5NMC811) in the presence of neutral and charged oxygen vacancies by means of first-principles density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. We find that oxygen vacancies with neutral or +2 charge favor the Ni migration to Li tetrahedral and/or octahedral sites, both thermodynamically and kinetically. As for the case of +1 charged oxygen vacancies, while they thermodynamicaly favor the Ni migration to the Li site, the relatively high migration barrier suggests that they kinetically prohibit the Ni migration. Our results suggest that controlling the formation of oxygen vacancies is the key to enhancing the Ni-rich NMC structural stability in particular in their charged states.

2.
J Phys Condens Matter ; 32(4): 045001, 2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31585452

ABSTRACT

Surface interaction through adsorption and dissociation between H2O and metal oxides plays an important role in many industrial as well as fundamental processes. To gain further insights on the interaction, this study performs dispersion-corrected Hubbard-corrected density functional theory calculations in H2O adsorption and dissociation on stoichiometric and nonstoichiometric CuO(1 1 1) surfaces. The nonstoichiometric surfaces consist of oxygen vacancy defect and oxygen-preadsorbed surfaces. This study finds that H2O is chemically adsorbed on the top of Cusub and Cusub-Cusub bridge due to the interaction of its p  orbital with d orbital of Cu. The adsorption is found to be the strongest on the surface with the oxygen vacancy defect, followed by the stoichiometric surface, and the oxygen-preadsorbed surface. The oxygen vacancy increases the reactivity for H2O adsorption and reduces the reaction energy required for H2O dissociation on the surface. However, the surface modification by the oxygen-preadsorbed significantly reduces the barrier energy for H2O dissociation when compared with the other surfaces.

3.
Phys Chem Chem Phys ; 21(36): 20276-20286, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31490485

ABSTRACT

A DFT study of methanol production via CO2 hydrogenation reactions on clean Ni(111) and Ni(111)-M (M = Cu, Pd, Pt, or Rh) surfaces has been performed. The reaction network of this synthesis reaction has been determined using energy profiles. The competing reaction network between the formate-mediated route and the carboxyl-mediated route is also presented. Both routes are equally possible in mediating the overall synthesis reactions. A simple selectivity analysis based on the energy barrier shows that methanol synthesis is more preferred rather than formic acid (HCOOH) or carbon monoxide (CO) production. A mean-field kinetic analysis is also employed to determine the kinetic performance of all catalytic surfaces. The formate-mediated route is found to be energetically and kinetically more dominant than the carboxyl-mediated route. Cu, Pd, and Pt dopants are successful in increasing the kinetic performance of the clean Ni(111) surface in the formate route and Cu, Pt, and Rh dopants in the carboxyl route.

4.
J Phys Condens Matter ; 31(36): 365001, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31121574

ABSTRACT

Due to the increasing demands of new and renewable energy sources by utilising plant oils, uncovering the underlying physico-chemical phenomena at the atomic level responsible for the effective deoxygenation plays a vital role in improving the performance of well-known as well as in looking for the possible new catalysts. This study aims at investigating the adsorption and C-O bonds cleavage of methyl butanoate (MB) over MoS2-based catalyst with various loads of Ni promoters by using first-principles density functional theory (DFT). This study employs surface model that never been used by previous researchers for their investigations of adsorption and bonds cleavage on Ni promoted MoS2-based catalysts. The introduction of nickel into MoS2-based catalyst allows the surface charges when interacts with MB to redistribute in such a way that induces stronger Coulombic attractive forces. This in turn could result in a more stable adsorption configuration. However only in certain Ni-loads will results in the most stable adsorption. Nevertheless the most stable adsorption of MB occurs on M-edge configuration which consists of two Ni atoms, i.e. M-2-Ni-A with adsorption energy at about -2.96 eV. As a comparison, the adsorption energy of MoS2 with the absent of Ni, i.e. M-0-Ni is just -2.79 eV. Since there are three C-O bonds in MB, this study proposes three possible reactions for these bonds to cleave. By using CI-NEB method, the activation energies of those three reaction are calculated. It shows that the presence of Ni with appropriate load could promote C-O bond cleavage, especially in one reaction C-O bond is weaken considerably. Further evaluation on bond dissociation energies of the closest C-C bond to the catalyst surface, M-2-Ni-A shows better reactivity on C-C bond cleavage than M-0-Ni, disregarding of those three reaction routes.

5.
J Phys Condens Matter ; 24(47): 475506, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23110845

ABSTRACT

The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H(2)O/Li-MMT.

6.
J Phys Condens Matter ; 19(36): 365244, 2007 Sep 12.
Article in English | MEDLINE | ID: mdl-21694189

ABSTRACT

The dissociation of SO(2) on Cu(100) and the diffusion of the co-adsorbed decomposition products S and O were investigated using density functional theory-based calculations. Two dissociation pathways were considered: (P1) [Formula: see text] and (P2) [Formula: see text], the difference being in the formation of the intermediate product SO. It is found that P1 is favored kinetically with a total effective dissociation barrier of 0.78 eV compared to P2 which has 1.58 eV. The transition state leading to the formation of O+SO is found to be a result of the weakened interaction between the O of SO and the surface while the transition state for breaking SO is seen to be that of the repulsive nature of co-adsorbed S and O. The co-adsorbed S has a lower diffusion barrier of 0.41 eV compared to O which has a barrier ranging from 0.49 to 0.95 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...