Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(9): 10445-10458, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463305

ABSTRACT

A methodology for the quantitative analysis of enzymatic removal of biofilms (BF) was developed, based on a quartz crystal microbalance (QCM) under stationary conditions. This was applied to the case of Pseudomonas protegens (PP) BFs, through a series of five enzymes, whose removal activity was screened using the presented methodology. The procedure is based on the following: when BFs can be modeled as rigid materials, QCM can be used as a balance under stationary conditions for determining the BFs mass reduction by enzymatic removal. For considering a BF as a rigid model, energy dissipation effects, associated with viscoelastic properties of the BF, must be negligible. Hence, a QCM system with detection of dissipation (referred to as QCM with dissipation) was used for evaluating the energy losses, which, in fact, resulted in negligible energy losses in the case of dehydrated PP BFs, validating the application of the Sauerbrey equation for the change of mass calculations. The stationary methodology reduces operating times and simplifies data analysis in comparison to dynamic approaches based on flow setups, which requires the incorporation of dissipation effects due to the liquid media. By carrying out QCM, glycosidase-type enzymes showed BF removal higher than 80% at enzyme concentration 50 ppm, reaching removal over 90% in the cases of amylase and cellulase/xylanase enzymes. The highest removal percentage produced a reduction from about 15 to 1 µg in the BF mass. Amylase enzyme was tested from below 50 to 1 ppm, reaching around 60% of removal at 1 ppm. The obtained results were supported by other instrumental techniques such as Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, high performance anion exchange chromatography, thermogravimetric analysis, and differential scanning calorimetry. The removal quantifications obtained with QCM were compared with those obtained by well-established screening techniques (UV-vis spectrophotometry using crystal violet and agar diffusion test). The proposed methodology expands the possibility of using a quartz microbalance to perform enzymatic activity screening.

2.
J Org Chem ; 87(20): 13455-13468, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35775947

ABSTRACT

Two important activities take place in the surface of Trypanosoma cruzi, the agent of Chagas disease: the trans-sialidase (TcTS) catalyzes the transfer of sialic acid from the host glycoconjugates to the mucin-like glycoproteins from the parasite and the presence of lytic antibodies recognize the epitope α-Galp(1 → 3)-ß-Galp(1 → 4)-α-GlcNAcp. This antigenic structure is known to be present in the parasite mucins; however, in order to be substrates of trans-sialidase, some of the galactose residues should be in the ß-Galp configuration. To study the interaction between both activities, it is important to count the synthetic structures as well as the structural-related glycomimetics. With this purpose, we addressed the synthesis of a trisaccharide and two isomeric tetrasaccharides containing the 1-S-α-Galp(1 → 3)-ß-Galp motif, the thio analog of the epitope recognized by lytic antibodies. Starting with a common lactose precursor, the sulfur function was incorporated by double inversion of the configuration of the galactose residue that was further glycosylated using different activated donors. Both tetrasaccharides were good acceptors of sialic acid in the reaction catalyzed by TcTS, as determined by high-performance anion exchange chromatography.


Subject(s)
Galactose , N-Acetylneuraminic Acid , Galactose/chemistry , Epitopes , Lactose , Neuraminidase , Oligosaccharides/chemistry , Glycoproteins , Mucins/chemistry , Trisaccharides , Glycoconjugates , Sulfur
3.
RSC Chem Biol ; 3(2): 121-139, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35360885

ABSTRACT

Sialic acid, as a component of cell surface glycoconjugates, plays a crucial role in recognition events. Efficient synthetic methods are necessary for the supply of sialosides in enough quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the steps of protection and deprotection of the constituent monosaccharides required in a chemical synthesis. Sialyl transferases with CMP-Neu5Ac as an activated donor were used for the construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. trans-Sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), which fulfills an important role in the pathogenicity of the parasite, is the most studied one. The recombinant enzyme was used for the sialylation of ß-galactosyl oligosaccharides. One of the main advantages of trans-sialylation is that it circumvents the use of the high energy nucleotide. Easily available glycoproteins with a high content of sialic acid such as fetuin and bovine κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we review the trans-sialidase from various microorganisms and describe their application for the synthesis of sialooligosaccharides.

4.
Med Chem ; 17(7): 724-731, 2021.
Article in English | MEDLINE | ID: mdl-32370720

ABSTRACT

BACKGROUND: Chagas disease, caused by the parasite Trypanosoma cruzi, represents a worldwide epidemiological, economic, and social problem. In the last decades, the trans-sialidase enzyme of Trypanosoma cruzi has been considered an attractive target for the development of new agents with potential trypanocidal activity. OBJECTIVE: In this work, the aim was to find new potential non-sugar trans-sialidase inhibitors using benzoic acid as a scaffold. METHODS: A structure-based virtual screening of the ZINC15 database was carried out. Additionally, the enzyme and trypanocidal activity of the selected compounds was determined. RESULTS: The results of this work detected 487 compounds derived from benzoic acid as potential transsialidase inhibitors with a more promising binding energy value (< -7.7 kcal/mol) than the known inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA). In particular, two lead compounds, V1 and V2, turned out to be promising trans-sialidase inhibitors. Even though the trypanocidal activity displayed was low, these compounds showed trans-sialidase inhibition values of 87.6% and 29.6%, respectively. CONCLUSION: Structure-based virtual screening using a molecular docking approach is a useful method for the identification of new trans-sialidase inhibitors.


Subject(s)
Benzoic Acid/chemistry , Benzoic Acid/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Neuraminidase/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Benzoic Acid/metabolism , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Neuraminidase/chemistry , Neuraminidase/metabolism , Protein Conformation , Thermodynamics , Trypanosoma cruzi/drug effects , User-Computer Interface
5.
Carbohydr Res ; 478: 33-45, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31054381

ABSTRACT

Trypanosoma cruzi trans-sialidase (TcTS) is a cell surface protein that participates in the adhesion and invasion mechanisms of the parasite into the host cells, making it an attractive target for inhibitors design. In order to contribute to the knowledge of the interaction between TcTS and their acceptor substrates, we designed and synthesized a library of 20 benzyl lactosides substituted in C-6 of the glucose residue with a series of 1,2,3-triazole derivatives containing different aromatic substituents in the C-4 position. The library was prepared by alkyne-azide cycloaddition reaction catalyzed by Cu(I) ("click chemistry") between a benzyl ß-lactoside functionalized with an azide group in the C-6 position and a series of 2-propargyl phenyl ethers. Herein we analyzed the chromatographic behavior on high performance anion exchange chromatography (HPAEC) of the triazoyl-lactose derivatives and their activity as acceptors of TcTS and inhibitors of the sialylation of N-acetyllactosamine. The triazoyl derivatives were obtained with excellent yields and all of them behaved as moderate alternative substrates. The presence of bulky hydrophobic substituents dramatically increased the retention times in HPAEC but did not affect significantly their acceptor properties toward TcTS.


Subject(s)
Amino Sugars/antagonists & inhibitors , Glycoproteins/metabolism , Glycosides/pharmacology , Neuraminidase/metabolism , Trypanosoma cruzi/enzymology , Amino Sugars/metabolism , Carbohydrate Conformation , Glycoproteins/chemistry , Glycosides/chemical synthesis , Glycosides/chemistry , Hydrophobic and Hydrophilic Interactions , Neuraminidase/chemistry , Substrate Specificity
6.
Carbohydr Res ; 479: 48-58, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31132642

ABSTRACT

Cells are covered by a complex array of carbohydrates. Among them, sialosides are of key importance in intracellular adhesion, recognition and signaling. The need for structurally diverse sialosides impelled the search for efficient synthetic methods since their isolation from natural sources is a difficult task. The enzymatic approach obviates the need of a chemical synthesis for protecting or participating groups in the substrates. The trans-sialidase of Trypanosoma cruzi (TcTS) is highly stereospecific for the transfer of sialic acid from an α-sialylglycoside donor to a terminal ß-galactopyranosyl unit in the acceptor substrate to form the α-Neu5Ac-(2 → 3)-ß-D-Galp motif. The enzyme was cloned and easily available glycoproteins, e.g. fetuin, may be used as donors of sialic acid, constituting strong points for the scalability of TcTS-catalyzed reactions. This review outlines the preparative use of TcTS for the sialylation of oligosaccharides. A detailed description of the substrates used as sialic acid donors, the acceptor substrates and the methods employed to monitor the reaction is included.


Subject(s)
Glycoproteins/metabolism , N-Acetylneuraminic Acid/chemistry , Neuraminidase/metabolism , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Trypanosoma cruzi/enzymology , Chemistry Techniques, Synthetic
7.
Eur J Med Chem ; 156: 252-268, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-30006170

ABSTRACT

In the last two decades, trans-sialidase of Trypanosoma cruzi (TcTS) has been an important pharmacological target for developing new anti-Chagas agents. In a continuous effort to discover new potential TcTS inhibitors, 3-amino-3-arylpropionic acid derivatives (series A) and novel phthaloyl derivatives (series B, C and D) were synthesized and molecular docking, TcTS enzyme inhibition and determination of trypanocidal activity were carried out. From four series obtained, compound D-11 had the highest binding affinity value (-11.1 kcal/mol) compared to reference DANA (-7.8 kcal/mol), a natural ligand for TS enzyme. Furthermore, the 3D and 2D interactions analysis of compound D-11 showed a hydrogen bond, π-π stacking, π-anion, hydrophobic and Van der Waals forces with all important amino acid residues (Arg35, Arg245, Arg314, Tyr119, Trp312, Tyr342, Glu230 and Asp59) on the active site of TcTS. Additionally, D-11 showed the highest TcTS enzyme inhibition (86.9% ±â€¯5) by high-performance ion exchange chromatography (HPAEC). Finally, D-11 showed better trypanocidal activity than the reference drugs nifurtimox and benznidazole with an equal % lysis (63 ±â€¯4 and 65 ±â€¯2 at 10 µg/mL) and LC50 value (52.70 ±â€¯2.70 µM and 46.19 ±â€¯2.36 µM) on NINOA and INC-5 strains, respectively. Therefore, D-11 is a small-molecule with potent TcTS inhibition and a strong trypanocidal effect that could help in the development of new anti-Chagas agents.


Subject(s)
Glycoproteins/antagonists & inhibitors , Neuraminidase/antagonists & inhibitors , Propionates/chemistry , Propionates/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Amination , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Design , Glycoproteins/metabolism , Humans , Molecular Docking Simulation , Neuraminidase/metabolism , Structure-Activity Relationship
8.
Carbohydr Res ; 450: 30-37, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28858610

ABSTRACT

Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense glycocalix mainly composed by glycoproteins called mucins which are also the acceptors of sialic acid in a reaction catalyzed by a trans-sialidase (TcTS). Sialylation of trypomastigote mucins protects the parasite from lysis by the anti α-Galp antibodies from serum. The TcTS is essential for the infection process since T. cruzi is unable to biosynthesize sialic acid. The enzyme specifically transfers it from a terminal ß-d-Galp unit in the host glycoconjugate to terminal ß-d-Galp units in the parasite mucins to construct the d-NeuNAc(α2→3)ß-d-Galp motif. On the other hand, although galactose is the most abundant sugar in mucins of both, the infective trypomastigotes and the insect stage epimastigotes, α-d-Galp is only present in the infective stage whereas ß-d-Galf is characteristic of the epimastigote stage of the less virulent strains. Neither α-d-Galp nor d-Galf is acceptor of sialic acid. In the mucins, some of the oligosaccharides are branched with terminal ß-d-Galp units to be able to accept sialic acid in the TcTS reaction. Based on previous reports showing that anti α-Galp antibodies only partially colocalize with sialic acid, we have undertaken the synthesis of the trisaccharide α-d-Galp(1→3)-[ß-d-Galp(1→6)]-d-Galp, the smallest structure containing both, the antigenic d-Galp(α1→3)-d-Galp unit and the sialic acid-acceptor ß-d-Galp unit. The trisaccharide was obtained as the 6-aminohexyl glycoside to facilitate further conjugation for biochemical studies. The synthetic approach involved the α-galactosylation at O-4 of a suitable precursor of the reducing end, followed by ß-galactosylation at O-6 of the same precursor and introduction of the 6-aminohexyl aglycone. The fully deprotected trisaccharide was successfully sialylated by TcTS using either 3'-sialyllactose or fetuin as donors. The product, 6-aminohexyl α-d-NeuNAc(2→3)-ß-d-Galp(1→6)-[α-d-Galp(1→3)]-ß-d-Galp, was purified and characterized.


Subject(s)
Antibodies/chemistry , Glycoproteins/metabolism , Neuraminidase/metabolism , Trisaccharides/chemical synthesis , Trypanosoma cruzi/metabolism , Antibodies/immunology , Calcium-Binding Proteins/immunology , Carbohydrate Sequence , Chemistry Techniques, Synthetic , Monosaccharide Transport Proteins/immunology , Periplasmic Binding Proteins/immunology , Trisaccharides/metabolism
9.
Eur J Med Chem ; 132: 249-261, 2017 May 26.
Article in English | MEDLINE | ID: mdl-28364659

ABSTRACT

Chagas disease is one of the most important neglected parasitic diseases afflicting developed and undeveloped countries. There are currently limited options for inexpensive and secure pharmacological treatment. In this study, we employed a structure-based virtual screening protocol for 3180 FDA-approved drugs for repositioning of them as potential trans-sialidase inhibitors. In vitro and in vivo evaluations were performed for the selected drugs against trypomastigotes from the INC-5 and NINOA strains of T. cruzi. Also, inhibition of sialylation by the trans-sialidase enzyme reaction was evaluated using high-performance anion-exchange chromatography with pulse amperometric detection to confirm the mechanism of action. Results from the computational study showed 38 top drugs with the best binding-energies. Four compounds with antihistaminic, anti-hypertensive, and antibiotic properties showed better trypanocidal effects (LC50 range = 4.5-25.8 µg/mL) than the reference drugs, nifurtimox and benznidazole (LC50 range = 36.1-46.8 µg/mL) in both strains in the in vitro model. The anti-inflammatory, sulfasalazine showed moderate inhibition (37.6%) of sialylation in a trans-sialidase enzyme inhibition reaction. Sulfasalazine also showed the best trypanocidal effects in short-term in vivo experiments on infected mice. This study suggests for the first time that the anti-inflammatory sulfasalazine could be used as a lead compound to develop new trans-sialidase inhibitors.


Subject(s)
Drug Repositioning/methods , Glycoproteins/antagonists & inhibitors , Neuraminidase/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Animals , Anti-Inflammatory Agents , Antiprotozoal Agents/chemistry , Mice , Structure-Activity Relationship , Sulfasalazine/chemistry , Sulfasalazine/pharmacology
10.
Glycoconj J ; 33(5): 809-18, 2016 10.
Article in English | MEDLINE | ID: mdl-27306205

ABSTRACT

The synthesis of multivalent sialylated glycoclusters is herein addressed by a chemoenzymatic approach using the trans-sialidase of Trypanosoma cruzi (TcTS). Multivalent ß-thio-galactopyranosides and ß-thio-lactosides were used as acceptor substrates and 3'-sialyllactose as the sialic acid donor. High performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was shown to be an excellent technique for the analysis of the reaction products. Different eluting conditions were optimized to allow the simultaneous resolution of the sialylated species, as well as their neutral precursors. The TcTS efficiently transferred sialyl residues to di, tri, tetra and octa ß-thiogalactosides. In the case of an octavalent thiolactoside, up to six polysialylated compounds could be resolved. Preparative sialylation reactions were performed using the tetravalent and octavalent acceptor substrates. The main sialylated derivatives could be unequivocally assigned by MALDI mass spectrometry. Inhibition of the transfer to the natural substrate, N-acetyllactosamine, was also studied. The octalactoside caused 82 % inhibition of sialic acid transfer when we used equimolar concentrations of donor, acceptor and inhibitor.


Subject(s)
Glycoproteins/chemistry , Lactose/analogs & derivatives , Neuraminidase/chemistry , Protozoan Proteins/chemistry , Sialic Acids/chemistry , Thiogalactosides/chemistry , Trypanosoma cruzi/enzymology , Chromatography, High Pressure Liquid , Lactose/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Bioorg Med Chem ; 23(6): 1213-22, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25703305

ABSTRACT

The hexasaccharide ß-D-Galp-(1→2)-[ß-D-Galp-(1→3)]-ß-D-Galp-(1→6)-[ß-D-Galp(1→2)-ß-D-Galf(1→4)]-D-GlcNAc (10) and its ß-D-Galf-(1→2)-ß-D-Galf containing isomer (7) are the largest carbohydrates in mucins of some strains of Trypanosoma cruzi. The terminal ß-D-Galp units are sites of sialylation by the parasite trans-sialidase. Hexasaccharide 10 was chemically synthesized for the first time by a [3+3] nitrilium based convergent approach, using the trichloroacetimidate method of glycosylation. The (1)H NMR spectrum of its alditol was identical to the spectrum of the product released by ß-elimination from the parasite mucin. The trans-sialylation reaction studied on the benzyl glycoside of 10 showed two monosialylated products whose relative abundance changed with time. On the other hand, only one product was produced by sialylation of the benzyl glycoside of 7. A preparative synthesis of the latter and spectroscopic analysis of the product unequivocally established the sialylation site at the less hindered (1→3)-linked galactopyranose.


Subject(s)
Glycoproteins/metabolism , Mucins/chemistry , Mucins/metabolism , Neuraminidase/metabolism , Oligosaccharides/chemical synthesis , Trypanosoma cruzi/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/metabolism
12.
Beilstein J Org Chem ; 10: 1433-44, 2014.
Article in English | MEDLINE | ID: mdl-24991298

ABSTRACT

Conjugation with polyethylene glycol (PEG), known as PEGylation, has been widely used to improve the bioavailability of proteins and low molecular weight drugs. The covalent conjugation of PEG to the carbohydrate moiety of a protein has been mainly used to enhance the pharmacokinetic properties of the attached protein while yielding a more defined product. Thus, glycoPEGylation was successfully applied to the introduction of a PEGylated sialic acid to a preexisting or enzymatically linked glycan in a protein. Carbohydrates are now recognized as playing an important role in host-pathogen interactions in protozoal, bacterial and viral infections and are consequently candidates for chemotherapy. The short in vivo half-life of low molecular weight glycans hampered their use but methods for the covalent attachment of PEG have been less exploited. In this review, information on the preparation and application of PEG-carbohydrates, in particular multiarm PEGylation, is presented.

13.
Beilstein J Org Chem ; 10: 3073-3086, 2014.
Article in English | MEDLINE | ID: mdl-25670976

ABSTRACT

In this work we describe the synthesis of mono- and divalent ß-N- and ß-S-galactopyranosides and related lactosides built on sugar scaffolds and their evaluation as substrates and inhibitors of the Trypanosoma cruzi trans-sialidase (TcTS). This enzyme catalyzes the transfer of sialic acid from an oligosaccharidic donor in the host, to parasite ßGalp terminal units and it has been demonstrated that it plays an important role in the infection. Herein, the enzyme was also tested as a tool for the chemoenzymatic synthesis of sialic acid containing glycoclusters. The transfer reaction of sialic acid was performed using a recombinant TcTS and 3'-sialyllactose as sialic acid donor, in the presence of the acceptor having ßGalp non reducing ends. The products were analyzed by high performance anion exchange chromatography with pulse amperometric detection (HPAEC-PAD). The ability of the different S-linked and N-linked glycosides to inhibit the sialic acid transfer reaction from 3'-sialyllactose to the natural substrate N-acetyllactosamine, was also studied. Most of the substrates behaved as good acceptors and moderate competitive inhibitors. A di-N-lactoside showed to be the strongest competitive inhibitor among the compounds tested (70% inhibition at equimolar concentration). The usefulness of the enzymatic trans-sialylation for the preparation of sialylated ligands was assessed by performing a preparative sialylation of a divalent substrate, which afforded the monosialylated compound as main product, together with the disialylated glycocluster.

14.
Glycobiology ; 22(10): 1363-73, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22653661

ABSTRACT

The trans-sialidase of Trypanosoma cruzi (TcTS) catalyzes the transfer of sialic acid from host glycoconjugates to terminal ß-galactopyranosides in the mucins of the parasite. During infection, the enzyme is actively shed by the parasite to the bloodstream inducing hematological alterations. Lactitol prevents cell apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. Linear polyethyleneglycol (PEG) conjugates of lactose analogs were prepared but their clearance from blood was still quite fast. With the aim of improving their circulating half-lives in vivo, we now synthesized covalent conjugates of eight-arm PEG. The star-shape of these conjugates allows an increase in the molecular weight together with the loading of the active sugar. Two approaches were used for PEGylation of disaccharide derivatives containing ß-D-Galp as the non-reducing unit. (1) Amide formation between benzyl ß-D-galactopyranosyl-(1→6)-2-amino-2-deoxy-α-D-glucopyranoside and a succinimide-activated PEG. (2) Conjugation of lactobionolactone with amino end-functionalized PEG. Two 8-arm PEG derivatives (20 and 40 kDa) were used for each sugar. Substitution of all arms was proved by (1)H nuclear magnetic resonance (NMR) spectroscopy. The bioavailability of the conjugates in mice plasma was considerably improved with respect to the 5 kDa linear PEG conjugates retaining their inhibitory properties.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycoproteins/antagonists & inhibitors , Lactose/pharmacology , Neuraminidase/antagonists & inhibitors , Polyethylene Glycols/chemistry , Trypanosoma cruzi/enzymology , Biological Availability , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Glycoproteins/metabolism , Lactose/analogs & derivatives , Lactose/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Neuraminidase/metabolism , Structure-Activity Relationship
15.
J Eukaryot Microbiol ; 58(2): 79-87, 2011.
Article in English | MEDLINE | ID: mdl-21332877

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi and is endemic to North, Central and South American countries. Current therapy against this disease is only partially effective and produces adverse side effects. Studies on the metabolic pathways of T. cruzi, in particular those with no equivalent in mammalian cells, might identify targets for the development of new drugs. Ceramide is metabolized to inositolphosphoceramide (IPC) in T. cruzi and other kinetoplastid protists whereas in mammals it is mainly incorporated into sphingomyelin. In T. cruzi, in contrast to Trypanosoma brucei and Leishmania spp., IPC functions as lipid anchor constituent of glycoproteins and free glycosylinositolphospholipids (GIPLs). Inhibition of IPC and GIPLs biosynthesis impairs differentiation of trypomastigotes into the intracellular amastigote forms. The gene encoding IPC synthase in T. cruzi has been identified and the enzyme has been expressed in a cell-free system. The enzyme involved in IPC degradation and the remodelases responsible for the incorporation of ceramide into free GIPLs or into the glycosylphosphatidylinositols anchoring glycoproteins, and in fatty acid modifications of these molecules of T. cruzi have been understudied. Inositolphosphoceramide metabolism and remodeling could be exploited as targets for Chagas disease chemotherapy.


Subject(s)
Glycosphingolipids/metabolism , Trypanosoma cruzi/metabolism , Trypanosomatina/metabolism , Biosynthetic Pathways , Ceramides/metabolism , Glycosphingolipids/biosynthesis , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosomatina/genetics
16.
Glycoconj J ; 27(5): 549-59, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20645127

ABSTRACT

Trypanosoma cruzi, the agent of Chagas disease, expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The enzyme is shed to the medium and may affect the immune system of the host. We have previously described that lactose derivatives effectively inhibited the transfer of sialic acid to N-acetyllactosamine. Lactitol also prevented the apoptosis caused by the TcTS, although it is rapidly eliminated from the circulatory system. In this paper we report covalent conjugation of polyethylene glycol (PEG) with lactose, lactobionolactone and benzyl beta-D-galactopyranosyl-(1-->6)-2-amino-2-deoxy-alpha-D-glucopyranoside (1) with the hope to improve the bioavailability, though retaining their inhibitory properties. Different conjugation methods have been used and the behavior of the PEGylated products in the TcTS reaction was studied.


Subject(s)
Disaccharides/chemistry , Glycoproteins/metabolism , Neuraminidase/metabolism , Polyethylene Glycols/chemistry , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanosoma cruzi/enzymology , Carbohydrate Conformation , Carbohydrate Sequence , Drug Carriers , Glycoproteins/antagonists & inhibitors , Lactose/analogs & derivatives , Lactose/chemical synthesis , Lactose/chemistry , Lactose/metabolism , Lactose/pharmacology , Molecular Sequence Data , Mucins/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminidase/antagonists & inhibitors , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
17.
Glycobiology ; 20(8): 982-90, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20375068

ABSTRACT

Trypanosoma cruzi, the agent of American trypanosomiasis is unable to synthesize sialic acid (SA). Instead of using the corresponding nucleotide sugar as donor of the monosaccharide, the transfer occurs from alpha-2,3-linked SA in the host sialoglycoconjugates to terminal beta-galactopyranosyl units of the parasite mucins. For that purpose, T. cruzi expresses a glycosylphosphatidylinositol-anchored trans-sialidase (TcTS) that is shed into the milieu, being detected in the blood during the acute phase of the infection. The essential role of TcTS in infection and the absence of a similar activity in mammals make this enzyme an attractive target for the development of alternative chemotherapies. However, there is no effective inhibitor toward this enzyme. In vitro, 3'-sialyllactose (SL) as donor and radioactive lactose as acceptor substrate are widely used to measure TcTS activity. The radioactive sialylated product is then isolated by anion exchange chromatography and measured. Here we describe a new nonradioactive assay using SL or fetuin as donor and benzyl beta-d-Fuc-(1-->6)-alpha-d-GlcNAc (1) as acceptor. Disaccharide 1 was easily synthesized by regioselective glycosylation of benzyl alpha-d-GlcNAc with tetra-O-benzoyl-d-fucose followed by debenzoylation. Compound 1 lacks the hydroxyl group at C-6 of the acceptor galactose and therefore is not a substrate for galactose oxidase. Our method relies on the specific quantification of terminal galactose produced by trans-sialylation from the donor to the 6-deoxy-galactose (D-Fuc) unit of 1 by a spectrophotometric galactose oxidase assay. This method may also discriminate sialidase and trans-sialylation activities by running the assay in the absence of acceptor 1.


Subject(s)
Enzyme Inhibitors/pharmacology , Glycoproteins/antagonists & inhibitors , Glycoproteins/metabolism , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Trypanosoma cruzi/enzymology , Enzyme Inhibitors/chemistry , Galactose/chemical synthesis , Galactose/chemistry , Glycoproteins/chemistry , Neuraminidase/chemistry , Oligosaccharides/chemistry , Sialic Acids/chemistry , Sialic Acids/metabolism , Staining and Labeling , Structure-Activity Relationship , alpha-Fetoproteins/chemistry
19.
Carbohydr Res ; 342(16): 2465-9, 2007 Nov 26.
Article in English | MEDLINE | ID: mdl-17765882

ABSTRACT

The trans-sialidase from Trypanosoma cruzi (TcTS), the agent of Chagas' disease, is a unique enzyme involved in mammalian host-cell invasion. Since T. cruzi is unable to synthesize sialic acids de novo, TcTS catalyzes the transfer of alpha-(2-->3)-sialyl residues from the glycoconjugates of the host to terminal beta-galactopyranosyl units present on the surface of the parasite. TcTS also plays a key role in the immunomodulation of the infected host. Chronic Chagas' disease patients elicit TcTS-neutralizing antibodies that are able to inhibit the enzyme. N-Glycolylneuraminic acid has been detected in T. cruzi, and the trans-sialidase was pointed out as the enzyme involved in its incorporation from host glycoconjugates. However, N-glycolylneuraminic acid alpha-(2-->3)-linked-containing oligosaccharides have not been analyzed as donors in the T. cruzi trans-sialidase reaction. In this paper we studied the ability of TcTS to transfer N-glycolylneuraminic acid from Neu5Gc(alpha2-->3)Gal(beta1-->4)GlcbetaOCH(2)CH(2)N(3) (1) and Neu5Gc(alpha2-->3)Gal(beta1-->3)GlcNAcbetaOCH(2)CH(2)N(3) (2) to lactitol, N-acetyllactosamine and lactose as acceptor substrates. Transfer from 1 was more efficient (50-65%) than from 2 (20-30%) for the three acceptors. The reactions were inhibited when the enzyme was preincubated with a neutralizing antibody. K(m) values were calculated for 1 and 2 and compared with 3'-sialyllactose using lactitol as acceptor substrate. Analysis was performed by high-performance anion-exchange (HPAEC) chromatography. A competitive transfer reaction of compound 1 in the presence of 3'-sialyllactose and N-acetyllactosamine showed a better transfer of Neu5Gc than of Neu5Ac.


Subject(s)
Galactose/chemistry , Galactose/metabolism , Glycoproteins/metabolism , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Neuraminidase/metabolism , Trypanosoma cruzi/enzymology , Animals
20.
Bioorg Med Chem ; 15(7): 2611-6, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17292612

ABSTRACT

The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The O-linked chains may contain galactofuranose in addition to the acceptor galactopyranose units. Thus far, the galactofuranose form was found in the mucins of strains belonging to the less infective lineage. The acceptor properties of the chemically synthesized oligosaccharides were now studied in order to correlate their structure with the ability to act as substrates. Recombinant TcTS and sialyllactose as donor were used. The reactions were followed by HPAEC-PAD. The K(m) values were calculated for the free sugars, the sugar alditols and the benzyl glycosides. All the compounds showed to be good acceptors of sialic acid. Thus, the introduction of galactofuranose in the mucins of the strains of lineage 1 would not be responsible for the diminished virulence of the strains. The oligosaccharides and derivatives inhibited the transfer of sialic acid to the substrate N-acetyllactosamine with IC(50) values between 0.6 and 4 mM.


Subject(s)
Galactose/chemistry , Mucins/chemistry , Neuraminidase/metabolism , Oligosaccharides/chemical synthesis , Oligosaccharides/pharmacology , Sialic Acids/metabolism , Trypanosoma cruzi/chemistry , Amino Sugars/chemistry , Animals , Carbohydrate Sequence , Escherichia coli/metabolism , Galactose/isolation & purification , Kinetics , Molecular Sequence Data , Neuraminidase/antagonists & inhibitors , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...