Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 83(12): 2997-3006, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34185694

ABSTRACT

The microalga Arthrospira platensis (Spirulina) was used for tempeh wastewater treatment. Microalga growth and the kinetics of chemical oxygen demand (COD) degradation under different light intensities (2,100 and 4,300 lux), tempeh wastewater concentrations (0, 0.5, 1, 1.5% v/v), and sodium nitrate concentrations (0, 0.75, 1, 2, 2.5 g/L) were studied. Improved cell growth in wastewater indicated that mixotrophic growth was preferred. The addition of sodium nitrate up to 2 g/L increased COD removal. The highest COD removal was 92.2%, which was obtained from cultivation with 1% v/v tempeh wastewater, 2 g/L sodium nitrate, 2,100 lux, and the specific growth rate of 0.33 ± 0.01 day-1. The COD removal followed a pseudo-first-order kinetic model with the kinetic constant of 0.3748 day-1 and the nitrate uptake rate of 0.122 g/L-day. The results can be used to design a pilot-scale tempeh wastewater treatment facility using A. platensis for tertiary treatment. Based on the kinetic model, a 20 m3 reactor can treat tempeh wastewater to reduce the COD from 400 to 100 ppm in 4 days and produces approximately 32.8 kg of dried microalgae.


Subject(s)
Soy Foods , Spirulina , Water Purification , Biomass , Kinetics , Wastewater
2.
Analyst ; 140(8): 2618-22, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25713816

ABSTRACT

A high-throughput and selective method based on biomolecule affinity coordination was employed for measuring nanoparticle surface area in solutions. In this design, silver binding peptides (AgBPs) are immobilized on bacterial cellulose via fusion with cellulose binding domains to capture silver nanoparticles whereas green fluorescent proteins are fused with AgBPs as reporters for surface area quantification.


Subject(s)
Biosensing Techniques/methods , Metal Nanoparticles , Silver/chemistry , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Silver/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...