Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Neurosci Biobehav Rev ; 145: 105011, 2023 02.
Article in English | MEDLINE | ID: mdl-36565942

ABSTRACT

Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1ß and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central nervous system seems to be associated with altered/increased MORs expression, which might regulate harmful processes, such as drug addiction and pain. Here, we provide a critical evaluation on MORs' role during neuroinflammation and its implication for these conditions. Understanding MORs' functioning, their regulation and implications on drug addiction and pain may help elucidate their potential therapeutic use against these pathological conditions and associated disorders.


Subject(s)
Morphine , Substance-Related Disorders , Humans , Morphine/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Neuroinflammatory Diseases , Receptors, Opioid, mu/metabolism , Pain/drug therapy , Substance-Related Disorders/drug therapy
2.
Commun Biol ; 5(1): 980, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114351

ABSTRACT

Virgin female laboratory mice readily express pup care when co-housed with dams and pups. However, pup-sensitized virgins fail to express intruder-directed aggression on a single session of testing. To study whether repeated testing would affect the onset and dynamics of maternal or intruder-directed aggression, we tested dams and their accompanying virgins from postpartum day 4 to 6. Repeated testing led to escalated aggression towards male intruders in dams, but virgins never developed aggression. In dams, inhibition of the medial amygdala using DREADD (designer receptors exclusively activated by designer drugs) vectors carrying the hM4Di receptor blocked the expected increase in maternal aggression on the second testing day. Our data support that the onset of maternal aggression is linked to physiological changes occurring during motherhood, and that medial amygdala, a key centre integrating vomeronasal, olfactory and hormonal information, enables the expression of escalated aggression induced by repeated testing. Future studies selectively targeting specific neuronal populations of the medial amygdala are needed to allow a deeper understanding of the control of experience-dependent aggression increase, a phenomenon leading to the high aggression levels found in violent behaviours.


Subject(s)
Designer Drugs , Maternal Behavior , Aggression/physiology , Amygdala/physiology , Animals , Female , Humans , Lactation/physiology , Male , Maternal Behavior/physiology , Mice
3.
Front Behav Neurosci ; 16: 974692, 2022.
Article in English | MEDLINE | ID: mdl-36082308

ABSTRACT

The methyl-CpG binding protein 2 gene (MECP2) encodes an epigenetic transcriptional regulator implicated in neuronal plasticity. Loss-of-function mutations in this gene are the primary cause of Rett syndrome and, to a lesser degree, of other neurodevelopmental disorders. Recently, we demonstrated that both Mecp2 haploinsuficiency and mild early life stress decrease anxiety-like behaviours and neuronal activation in brain areas controlling these responses in adolescent female mice. Here, we extend this work to males by using Mecp2-null and wild type adolescent mice subjected to maternal separation and their non-stressed controls. We assessed their behavioural responses in a battery of anxiety-provoking tests. Upon exposure to an elevated plus maze in aversive conditions, we evaluated changes in c-FOS expression in stress- and anxiety-related brain regions. In addition, we assessed the impact of maternal separation in neuronal maturation using doublecortin and reelin as surrogate markers. Mutant males showed reduced motor abilities, increased activation of the olfactory bulbs, probably due to breathing abnormalities, and decreased activation of the paraventricular thalamic nucleus, when compared to wild type mice. In addition, maternal separation increased the number of immature doublecortin-like neurons found in Mecp2-null animals. Moreover, this work shows for the first time that reelin is decreased in the mutant animals at the olfactory tubercle, piriform cortex and hippocampal dentate gyrus, an effect also associated to maternal separation. Taken together, our results suggest that maternal separation exacerbates some phenotypical alterations associated with lack of MeCP2 in adolescent males.

4.
iScience ; 25(7): 104525, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35754727

ABSTRACT

During pregnancy hormones increase motivated pup-directed behaviors. We here analyze hormone-induced changes in brain activity, by comparing cFos-immunoreactivity in the sociosexual (SBN) and motivation brain networks (including medial preoptic area, MPO) of virgin versus late-pregnant pup-naïve female mice exposed to pups or buttons (control). Pups activate more the SBN than buttons in both late-pregnant and virgin females. By contrast, pregnancy increases pup-elicited activity in the motivation circuitry (e.g. accumbens core) but reduces button-induced activity and, consequently, button investigation. Principal components analysis supports the identity of the social and motivation brain circuits, placing the periaqueductal gray between both systems. Linear discriminant analysis of cFos-immunoreactivity in the socio-motivational brain network predicts the kind of female and stimulus better than the activity of the MPO alone; this suggests that the neuroendocrinological basis of social (e.g. maternal) behaviors conforms to a neural network model, rather than to distinct hierarchical linear pathways for different behaviors.

5.
J Neurodev Disord ; 13(1): 59, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34895132

ABSTRACT

BACKGROUND: Early-life stress can leave persistent epigenetic marks that may modulate vulnerability to psychiatric conditions later in life, including anxiety, depression and stress-related disorders. These are complex disorders with both environmental and genetic influences contributing to their etiology. Methyl-CpG Binding Protein 2 (MeCP2) has been attributed a key role in the control of neuronal activity-dependent gene expression and is a master regulator of experience-dependent epigenetic programming. Moreover, mutations in the MECP2 gene are the primary cause of Rett syndrome and, to a lesser extent, of a range of other major neurodevelopmental disorders. Here, we aim to study the interaction of MeCP2 with early-life stress in variables known to be affected by this environmental manipulation, namely anxiety-like behavior and activity of the underlying neural circuits. METHODS: Using Mecp2 heterozygous and wild-type female mice we investigated the effects of the interaction of Mecp2 haplodeficiency with maternal separation later in life, by assessing anxiety-related behaviors and measuring concomitant c-FOS expression in stress- and anxiety-related brain regions of adolescent females. Moreover, arginine vasopressin and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus were analyzed for neuronal activation. RESULTS: In wild-type mice, maternal separation caused a reduction in anxiety-like behavior and in the activation of the hypothalamic paraventricular nucleus, specifically in corticotropin-releasing hormone-positive cells, after the elevated plus maze. This effect of maternal separation was not observed in Mecp2 heterozygous females that per se show decreased anxiety-like behavior and concomitant decreased paraventricular nuclei activation. CONCLUSIONS: Our data supports that MeCP2 is an essential component of HPA axis reprogramming and underlies the differential response to anxiogenic situations later in life.


Subject(s)
Adverse Childhood Experiences , Hypothalamo-Hypophyseal System , Methyl-CpG-Binding Protein 2 , Animals , Anxiety/etiology , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Maternal Deprivation , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Pituitary-Adrenal System/metabolism
6.
FASEB J ; 35(9): e21806, 2021 09.
Article in English | MEDLINE | ID: mdl-34369605

ABSTRACT

During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.


Subject(s)
Amygdala/physiology , Animals, Newborn/genetics , Gene Expression/genetics , Lactation/genetics , Maternal Behavior/physiology , Animals , Female , Hormones/genetics , Mice , Models, Animal , Pregnancy , Receptors, Odorant/genetics , Vomeronasal Organ/physiology
8.
Neuroendocrinology ; 111(9): 805-830, 2021.
Article in English | MEDLINE | ID: mdl-32645699

ABSTRACT

Motherhood entails increased motivation for pups, which become strong reinforcers and guide maternal behaviours. This depends on steroids and lactogens acting on the brain of females during pregnancy and postpartum. Since virgin female mice exposed to pups are nearly spontaneously maternal, the specific roles of endocrine and pup-derived signals in the induction of maternal motivation remain unclear. This work investigates maternal motivation in dams and virgin female mice, using a novel variant of the pup retrieval paradigm, the motivated pup retrieval test. We also analyse the role of prolactin (PRL) and of stimuli derived from a litter of pups and its mother, in the acquisition of maternal motivation. Experimental design included female mice in 3 conditions: lactating dams, comothers (virgins housed and sharing pup care with dams) and pup-naïve virgins. Females underwent 3 motivated-pup-retrieval trials, with pups displaced behind a 10-cm-high wire-mesh barrier. Dams retrieved with significantly lower latencies than comothers or virgins, indicating that full maternal motivation appears only after pregnancy. Although initially comothers and virgins showed no retrieval, comothers significantly improved throughout the experiment, suggesting an induced sensitization process. Lengthening exposure of comothers to the dyad pups-dam (from 2 to 5 days at the beginning of testing) had no strong effects on maternal sensitization. PRL responsiveness was analysed in these animals using immunohistochemical detection of phosphorylated signal transducer and activator of transcription 5 (pSTAT5, PRL-derived signalling marker). As expected, dams showed significantly higher pSTAT5 expression in most of the analysed nuclei. Moreover, comothers displayed significantly higher PRL responsiveness than pup-naïve virgins in the medial preoptic nucleus, even if they display similar circulating PRL levels, which are significantly lower than those of dams. Given the instrumental role of this nucleus in the relay and integration of pup-derived stimuli to facilitate proactive maternal responses, this increase in PRL responsiveness likely reflects the mechanism underlying the maternal sensitization process reported in this work. Since the analyses of maternal motivation and PRL signalling in the brain were performed in the same animals, we were able to explore correlation between both set of data. The results shed light on the neuroendocrine mechanisms underlying maternal motivation and other aspects of maternal behaviour.


Subject(s)
Behavior, Animal/physiology , Maternal Behavior/physiology , Motivation/physiology , Prolactin/metabolism , Animals , Animals, Newborn , Female , Mice
9.
Brain Struct Funct ; 225(7): 2219-2238, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32749543

ABSTRACT

Deficits in arginine vasopressin (AVP) and oxytocin (OT), two neuropeptides closely implicated in the modulation of social behaviours, have been reported in some early developmental disorders and autism spectrum disorders. Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene are associated to Rett syndrome and other neuropsychiatric conditions. Thus, we first analysed AVP and OT expression in the brain of Mecp2-mutant mice by immunohistochemistry. Our results revealed no significant differences in these systems in young adult Mecp2-heterozygous females, as compared to WT littermates. By contrast, we found a significant reduction in the sexually dimorphic, testosterone-dependent, vasopressinergic innervation in several nuclei of the social brain network and oxytocinergic innervation in the lateral habenula of Mecp2-null males, as compared to WT littermates. Analysis of urinary production of pheromones shows that Mecp2-null males lack the testosterone-dependent pheromone darcin, strongly suggesting low levels of androgens in these males. In addition, resident-intruder tests revealed lack of aggressive behaviour in Mecp2-null males and decreased chemoinvestigation of the intruder. By contrast, Mecp2-null males exhibited enhanced social approach, as compared to WT animals, in a 3-chamber social interaction test. In summary, Mecp2-null males, which display internal testicles, display a significant reduction of some male-specific features, such as vasopressinergic innervation within the social brain network, male pheromone production and aggressive behaviour. Thus, atypical social behaviours in Mecp2-null males may be caused, at least in part, by the effect of lack of MeCP2 over sexual differentiation.


Subject(s)
Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Brain/metabolism , Methyl-CpG-Binding Protein 2/genetics , Oxytocin/metabolism , Pheromones/urine , Sex Differentiation/physiology , Aggression/physiology , Animals , Disease Models, Animal , Female , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Sex Characteristics , Social Behavior
10.
Front Cell Neurosci ; 14: 593309, 2020.
Article in English | MEDLINE | ID: mdl-33390905

ABSTRACT

Motherhood entails changes in behavior with increased motivation for pups, induced in part by pregnancy hormones acting upon the brain. This work explores whether this alters sensory processing of pup-derived chemosignals. To do so, we analyse the expression of immediate early genes (IEGs) in the vomeronasal organ (VNO; Egr1) and centers of the olfactory and vomeronasal brain pathways (cFos) in virgin and late-pregnant females exposed to pups, as compared to buttons (socially neutral control). In pup-exposed females, we quantified diverse behaviors including pup retrieval, sniffing, pup-directed attack, nest building and time in nest or on nest, as well as time off nest. Pups induce Egr1 expression in the VNO of females, irrespective of their physiological condition, thus suggesting the existence of VNO-detected pup chemosignals. A similar situation is found in the accessory olfactory bulb (AOB) and posteromedial part of the medial bed nucleus of the stria terminalis (BSTMPM). By contrast, in the medial amygdala and posteromedial cortical amygdala (PMCo), responses to pups-vs-buttons are different in virgin and late-pregnant females, thus suggesting altered sensory processing during late pregnancy. The olfactory system also shows changes in sensory processing with pregnancy. In the main olfactory bulbs, as well as the anterior and posterior piriform cortex, buttons activate cFos expression in virgins more than in pregnant females. By contrast, in the anterior and especially posterior piriform cortex, pregnant females show more activation by pups than buttons. Correlation between IEGs expression and behavior suggests the existence of two vomeronasal subsystems: one associated to pup care (with PMCo as its main center) and another related to pup-directed aggression observed in some pregnant females (with the BSTMPM as the main nucleus). Our data also suggest a coactivation of the olfactory and vomeronasal systems during interaction with pups in pregnant females.

11.
Neurochem Int ; 131: 104521, 2019 12.
Article in English | MEDLINE | ID: mdl-31419453

ABSTRACT

Chronic pain is a worldwide major health problem and many pain-suffering patients are under opioid based therapy. Epidemiological data show that pain intensity correlates with the risk of misuse of prescription opioids, and other drugs of abuse including alcohol. This increased vulnerability to suffer Substance Use Disorders could be, in part, caused by functional changes that occur over the mesocorticolimbic system, a brain pathway involved in reward processing and addiction. Previous data in rats revealed that inflammatory pain desensitizes mu opioid receptors (MORs) in the ventral tegmental area (VTA). As a consequence, pain alters dopamine release in the nucleus accumbens (NAc) derived from MOR activation in the VTA and also increases intake of high doses of heroine. Given that the VTA neurons target different brain regions, in the present study we first analyzed changes induced by inflammatory pain in the MOR dependent activation pattern of the main VTA projecting areas. To do that, we administered two doses (7 or 14 ng) of DAMGO (MORs agonist) or artificial cerebrospinal fluid (aCSF) focally into the VTA of rats and measured the activation in projection areas by cFos immunohistochemistry. Our results show that focal injections of DAMGO in the VTA increases cFos expression in the majority of its projecting areas, namely NAc, basolateral amygdala (BLA), cingulate cortex (ACC) and bed nucleus of the stria terminalis (BNST), as compared to aCSF. Second, we analyzed whether inflammatory pain would affect to cFos expression using a group of rats injected with CFA in the hind paw. In this case, we found that cFos expression was not significantly different between DAMGO and aCSF administered rats in BLA, ACC and BNST. Our results confirm that inflammatory pain induces desensitization of VTA MORs in a region dependent manner which can be very relevant for addictive behaviours.


Subject(s)
Genes, fos/genetics , Inflammation/metabolism , Pain/metabolism , Receptors, Opioid, mu/agonists , Ventral Tegmental Area/metabolism , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Freund's Adjuvant , Gene Expression Regulation , Immunohistochemistry , Inflammation/chemically induced , Male , Microinjections , Neural Pathways/drug effects , Neural Pathways/metabolism , Rats , Ventral Tegmental Area/drug effects
12.
Brain Struct Funct ; 224(4): 1647-1658, 2019 May.
Article in English | MEDLINE | ID: mdl-30923887

ABSTRACT

The protein doublecortin is mainly expressed in migrating neuroblasts and immature neurons. The X-linked gene MECP2, associated to several neurodevelopmental disorders such as Rett syndrome, encodes the protein methyl-CpG-binding protein 2 (MeCP2), a regulatory protein that has been implicated in neuronal maturation and refinement of olfactory circuits. Here, we explored doublecortin immunoreactivity in the brain of young adult female Mecp2-heterozygous and male Mecp2-null mice and their wild-type littermates. The distribution of doublecortin-immunoreactive somata in neurogenic brain regions was consistent with previous reports in rodents, and no qualitative differences were found between genotypes or sexes. Quantitatively, we found a significant increase in doublecortin cell density in the piriform cortex of Mecp2-null males as compared to WT littermates. A similar increase was seen in a newly identified population of doublecortin cells in the olfactory tubercle. In these olfactory structures, however, the percentage of doublecortin immature neurons that also expressed NeuN was not different between genotypes. By contrast, we found no significant differences between genotypes in doublecortin immunoreactivity in the olfactory bulbs. Nonetheless, in the periglomerular layer of Mecp2-null males, we observed a specific decrease of immature neurons co-expressing doublecortin and NeuN. Overall, no differences were evident between Mecp2-heterozygous and WT females. In addition, no differences could be detected between genotypes in the density of doublecortin-immunoreactive cells in the hippocampus or striatum of either males or females. Our results suggest that MeCP2 is involved in neuronal maturation in a region-dependent manner.


Subject(s)
Methyl-CpG-Binding Protein 2/physiology , Microtubule-Associated Proteins/physiology , Neurons/physiology , Neuropeptides/physiology , Olfactory Tubercle/growth & development , Olfactory Tubercle/metabolism , Piriform Cortex/growth & development , Piriform Cortex/metabolism , Animals , Cell Count , Doublecortin Domain Proteins , Female , Male , Methyl-CpG-Binding Protein 2/genetics , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neuropeptides/metabolism , Olfactory Pathways/cytology , Olfactory Pathways/growth & development , Olfactory Pathways/metabolism , Olfactory Tubercle/cytology , Piriform Cortex/cytology
13.
PLoS One ; 13(12): e0208960, 2018.
Article in English | MEDLINE | ID: mdl-30571750

ABSTRACT

Research of the central actions of prolactin is highly focused on females, but this hormone has also documented roles in male physiology and behaviour. Here, we provide the first description of the pattern of prolactin-derived signalling in the male mouse brain, employing the immunostaining of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) after exogenous prolactin administration. Next, we explore possible sexually dimorphic differences by comparing pSTAT5 immunoreactivity in prolactin-supplemented males and females. We also assess the role of testosterone in the regulation of central prolactin signalling in males by comparing intact with castrated prolactin-supplemented males. Prolactin-supplemented males displayed a widespread pattern of pSTAT5 immunoreactivity, restricted to brain centres showing expression of the prolactin receptor. Immunoreactivity for pSTAT5 was present in several nuclei of the preoptic, anterior and tuberal hypothalamus, as well as in the septofimbrial nucleus or posterodorsal medial amygdala of the telencephalon. Conversely, non-supplemented control males were virtually devoid of pSTAT5-immunoreactivity, suggesting that central prolactin actions in males are limited to situations concurrent with substantial hypophyseal prolactin release (e.g. stress or mating). Furthermore, comparison of prolactin-supplemented males and females revealed a significant, female-biased sexual dimorphism, supporting the view that prolactin has a preeminent role in female physiology and behaviour. Finally, in males, castration significantly reduced pSTAT5 immunoreactivity in some structures, including the paraventricular and ventromedial hypothalamic nuclei and the septofimbrial region, thus indicating a region-specific regulatory role of testosterone over central prolactin signalling.


Subject(s)
Prolactin/genetics , Reproduction/genetics , STAT5 Transcription Factor/genetics , Testosterone/genetics , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/physiology , Castration , Female , Hypothalamus/diagnostic imaging , Hypothalamus/metabolism , Male , Mice , Neurons/metabolism , Neurons/physiology , Phosphorylation , Prolactin/metabolism , Reproduction/physiology , STAT5 Transcription Factor/isolation & purification , Sex Characteristics , Signal Transduction , Testosterone/metabolism
14.
Front Neuroanat ; 11: 8, 2017.
Article in English | MEDLINE | ID: mdl-28280461

ABSTRACT

Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist ß-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

15.
Brain Struct Funct ; 222(2): 895-921, 2017 03.
Article in English | MEDLINE | ID: mdl-27344140

ABSTRACT

Prolactin is fundamental for the expression of maternal behaviour. In virgin female rats, prolactin administered upon steroid hormone priming accelerates the onset of maternal care. By contrast, the role of prolactin in mice maternal behaviour remains unclear. This study aims at characterizing central prolactin activity patterns in female mice and their variation through pregnancy and lactation. This was revealed by immunoreactivity of phosphorylated (active) signal transducer and activator of transcription 5 (pSTAT5-ir), a key molecule in the signalling cascade of prolactin receptors. We also evaluated non-hypophyseal lactogenic activity during pregnancy by administering bromocriptine, which suppresses hypophyseal prolactin release. Late-pregnant and lactating females showed significantly increased pSTAT5-ir resulting in a widespread pattern of immunostaining with minor variations between pregnant and lactating animals, which comprises nuclei of the sociosexual and maternal brain, including telencephalic (septum, nucleus of the stria terminalis, and amygdala), hypothalamic (preoptic, paraventricular, supraoptic, and ventromedial), and midbrain (periaqueductal grey) regions. During late pregnancy, this pattern was not affected by the administration of bromocriptine, suggesting it to be elicited mostly by non-hypophyseal lactogenic agents, likely placental lactogens. Virgin females displayed, instead, a variable pattern of pSTAT5-ir restricted to a subset of the brain nuclei labelled in pregnant and lactating mice. A hormonal substitution experiment confirmed that estradiol and progesterone contribute to the variability found in virgin females. Our results reflect how the shaping of the maternal brain takes place prior to parturition and suggest that lactogenic agents are important candidates in the development of maternal behaviours already during pregnancy.


Subject(s)
Brain/metabolism , Lactation , Maternal Behavior/physiology , Prolactin/physiology , STAT5 Transcription Factor/physiology , Animals , Female , Mice , Neurons/metabolism , Ovariectomy , Phosphorylation , Pregnancy , Prolactin/metabolism , Rats , STAT5 Transcription Factor/metabolism , Signal Transduction
16.
Mol Neurodegener ; 11(1): 64, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27600816

ABSTRACT

BACKGROUND: Synthetic zinc finger (ZF) proteins can be targeted to desired DNA sequences and are useful tools for gene therapy. We recently developed a ZF transcription repressor (ZF-KOX1) able to bind to expanded DNA CAG-repeats in the huntingtin (HTT) gene, which are found in Huntington's disease (HD). This ZF acutely repressed mutant HTT expression in a mouse model of HD and delayed neurological symptoms (clasping) for up to 3 weeks. In the present work, we sought to develop a long-term single-injection gene therapy approach in the brain. METHOD: Since non-self proteins can elicit immune and inflammatory responses, we designed a host-matched analogue of ZF-KOX1 (called mZF-KRAB), to treat mice more safely in combination with rAAV vector delivery. We also tested a neuron-specific enolase promoter (pNSE), which has been reported as enabling long-term transgene expression, to see whether HTT repression could be observed for up to 6 months after AAV injection in the brain. RESULTS: After rAAV vector delivery, we found that non-self proteins induce significant inflammatory responses in the brain, in agreement with previous studies. Specifically, microglial cells were activated at 4 and 6 weeks after treatment with non-host-matched ZF-KOX1 or GFP, respectively, and this was accompanied by a moderate neuronal loss. In contrast, the host-matched mZF-KRAB did not provoke these effects. Nonetheless, we found that using a pCAG promoter (CMV early enhancer element and the chicken ß-actin promoter) led to a strong reduction in ZF expression by 6 weeks after injection. We therefore tested a new non-viral promoter to see whether the host-adapted ZF expression could be sustained for a longer time. Vectorising mZF-KRAB with a promoter-enhancer from neuron-specific enolase (Eno2, rat) resulted in up to 77 % repression of mutant HTT in whole brain, 3 weeks after bilateral intraventricular injection of 10(10) virions. Importantly, repressions of 48 % and 23 % were still detected after 12 and 24 weeks, respectively, indicating that longer term effects are possible. CONCLUSION: Host-adapted ZF-AAV constructs displayed a reduced toxicity and a non-viral pNSE promoter improved long-term ZF protein expression and target gene repression. The optimized constructs presented here have potential for treating HD.


Subject(s)
Huntington Disease/metabolism , Neurons/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Genetic Therapy/methods , Genetic Vectors/genetics , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/therapy , Mice , Promoter Regions, Genetic/genetics , Zinc Fingers
17.
Brain Struct Funct ; 221(7): 3445-73, 2016 09.
Article in English | MEDLINE | ID: mdl-26388166

ABSTRACT

Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.


Subject(s)
Arginine Vasopressin/metabolism , Brain/metabolism , Oxytocin/metabolism , Animals , Brain/cytology , Female , Mice , Neurons/cytology , Neurons/metabolism , Neurophysins/metabolism
18.
Front Neurosci ; 9: 336, 2015.
Article in English | MEDLINE | ID: mdl-26500474

ABSTRACT

Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 µmol, respectively) than 2-HP (35 µmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.

19.
Front Behav Neurosci ; 9: 197, 2015.
Article in English | MEDLINE | ID: mdl-26257621

ABSTRACT

Virgin adult female mice display nearly spontaneous maternal care towards foster pups after a short period of sensitization. This indicates that maternal care is triggered by sensory stimulation provided by the pups and that its onset is largely independent on the physiological events related to gestation, parturition and lactation. Conversely, the factors influencing maternal aggression are poorly understood. In this study, we sought to characterize two models of maternal sensitization in the outbred CD1 strain. To do so, a group of virgin females (godmothers) were exposed to continuous cohabitation with a lactating dam and their pups from the moment of parturition, whereas a second group (pup-sensitized females), were exposed 2 h daily to foster pups. Both groups were tested for maternal behavior on postnatal days 2-4. Godmothers expressed full maternal care from the first test. Also, they expressed higher levels of crouching than dams. Pup-sensitized females differed from dams in all measures of pup-directed behavior in the first test, and expressed full maternal care after two sessions of contact with pups. However, both protocols failed to induce maternal aggression toward a male intruder after full onset of pup-directed maternal behavior, even in the presence of pups. Our study confirms that adult female mice need a short sensitization period before the onset of maternal care. Further, it shows that pup-oriented and non-pup-oriented components of maternal behavior are under different physiological control. We conclude that the godmother model might be useful to study the physiological and neural bases of the maternal behavior repertoire.

20.
Bioessays ; 36(10): 979-90, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25100403

ABSTRACT

Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining 'protect and repair' strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients.


Subject(s)
Brain/pathology , Cell Transplantation , Genetic Therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Synthetic Biology , Animals , Humans , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...