Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Brain Commun ; 5(2): fcad027, 2023.
Article in English | MEDLINE | ID: mdl-36942157

ABSTRACT

Abnormal reward processing is a hallmark of neurodegenerative diseases, most strikingly in frontotemporal dementia. However, the phenotypic repertoire and neuroanatomical substrates of abnormal reward behaviour in these diseases remain incompletely characterized and poorly understood. Here we addressed these issues in a large, intensively phenotyped patient cohort representing all major syndromes of sporadic frontotemporal dementia and Alzheimer's disease. We studied 27 patients with behavioural variant frontotemporal dementia, 58 with primary progressive aphasia (22 semantic variant, 24 non-fluent/agrammatic variant and 12 logopenic) and 34 with typical amnestic Alzheimer's disease, in relation to 42 healthy older individuals. Changes in behavioural responsiveness were assessed for canonical primary rewards (appetite, sweet tooth, sexual activity) and non-primary rewards (music, religion, art, colours), using a semi-structured survey completed by patients' primary caregivers. Changes in more general socio-emotional behaviours were also recorded. We applied multiple correspondence analysis and k-means clustering to map relationships between hedonic domains and extract core factors defining aberrant hedonic phenotypes. Neuroanatomical associations were assessed using voxel-based morphometry of brain MRI images across the combined patient cohort. Altered (increased and/or decreased) reward responsiveness was exhibited by most patients in the behavioural and semantic variants of frontotemporal dementia and around two-thirds of patients in other dementia groups, significantly (P < 0.05) more frequently than in healthy controls. While food-directed changes were most prevalent across the patient cohort, behavioural changes directed toward non-primary rewards occurred significantly more frequently (P < 0.05) in the behavioural and semantic variants of frontotemporal dementia than in other patient groups. Hedonic behavioural changes across the patient cohort were underpinned by two principal factors: a 'gating' factor determining the emergence of altered reward behaviour and a 'modulatory' factor determining how that behaviour is directed. These factors were expressed jointly in a set of four core, trans-diagnostic and multimodal hedonic phenotypes: 'reward-seeking', 'reward-restricted', 'eating-predominant' and 'control-like'-variably represented across the cohort and associated with more pervasive socio-emotional behavioural abnormalities. The principal gating factor was associated (P < 0.05 after correction for multiple voxel-wise comparisons over the whole brain) with a common profile of grey matter atrophy in anterior cingulate, bilateral temporal poles, right middle frontal and fusiform gyri: the cortical circuitry that mediates behavioural salience and semantic and affective appraisal of sensory stimuli. Our findings define a multi-domain phenotypic architecture for aberrant reward behaviours in major dementias, with novel implications for the neurobiological understanding and clinical management of these diseases.

2.
Front Neurol ; 11: 291, 2020.
Article in English | MEDLINE | ID: mdl-32373055

ABSTRACT

Our awareness of time, specifically of longer intervals spanning hours, days, months, and years, is critical for ensuring our sense of self-continuity. Disrupted time awareness over such intervals is a clinical feature in a number of frontotemporal dementia syndromes and Alzheimer's disease, but has not been studied and compared systematically in these diseases. We used a semi-structured caregiver survey to capture time-related behavioral alterations in 71 patients representing all major sporadic and genetic syndromes of frontotemporal dementia, in comparison to 28 patients with typical Alzheimer's disease and nine with logopenic aphasia, and 32 healthy older individuals. Survey items pertained to apparent difficulties ordering past personal events or estimating time intervals between events, temporal rigidity and clockwatching, and propensity to relive past events. We used a logistic regression model including diagnosis, age, gender, and disease severity as regressors to compare the proportions of individuals exhibiting each temporal awareness symptom between diagnostic groups. Gray matter associations of altered time awareness were assessed using voxel-based morphometry. All patient groups were significantly more prone to exhibit temporal awareness symptoms than healthy older individuals. Clinical syndromic signatures were identified. While patients with typical and logopenic Alzheimer's disease most frequently exhibited disturbed event ordering or interval estimation, patients with semantic dementia were most prone to temporal rigidity and clockwatching and those with behavioral variant frontotemporal dementia commonly exhibited all these temporal symptoms as well as a propensity to relive past events. On voxel-based morphometry, the tendency to relive past events was associated with relative preservation of a distributed left-sided temporo-parietal gray matter network including hippocampus. These findings reveal a rich and complex picture of disturbed temporal awareness in major dementia syndromes, with stratification of frontotemporal dementia syndromes from Alzheimer's disease. This is the first study to assess symptoms of altered temporal awareness across frontotemporal dementia syndromes and provides a motivation for future work directed to the development of validated clinical questionnaires, analysis of underlying neurobiological mechanisms and design of interventions.

3.
Brain ; 142(9): 2873-2887, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31321407

ABSTRACT

Impaired processing of emotional signals is a core feature of frontotemporal dementia syndromes, but the underlying neural mechanisms have proved challenging to characterize and measure. Progress in this field may depend on detecting functional changes in the working brain, and disentangling components of emotion processing that include sensory decoding, emotion categorization and emotional contagion. We addressed this using functional MRI of naturalistic, dynamic facial emotion processing with concurrent indices of autonomic arousal, in a cohort of patients representing all major frontotemporal dementia syndromes relative to healthy age-matched individuals. Seventeen patients with behavioural variant frontotemporal dementia [four female; mean (standard deviation) age 64.8 (6.8) years], 12 with semantic variant primary progressive aphasia [four female; 66.9 (7.0) years], nine with non-fluent variant primary progressive aphasia [five female; 67.4 (8.1) years] and 22 healthy controls [12 female; 68.6 (6.8) years] passively viewed videos of universal facial expressions during functional MRI acquisition, with simultaneous heart rate and pupillometric recordings; emotion identification accuracy was assessed in a post-scan behavioural task. Relative to healthy controls, patient groups showed significant impairments (analysis of variance models, all P < 0.05) of facial emotion identification (all syndromes) and cardiac (all syndromes) and pupillary (non-fluent variant only) reactivity. Group-level functional neuroanatomical changes were assessed using statistical parametric mapping, thresholded at P < 0.05 after correction for multiple comparisons over the whole brain or within pre-specified regions of interest. In response to viewing facial expressions, all participant groups showed comparable activation of primary visual cortex while patient groups showed differential hypo-activation of fusiform and posterior temporo-occipital junctional cortices. Bi-hemispheric, syndrome-specific activations predicting facial emotion identification performance were identified (behavioural variant, anterior insula and caudate; semantic variant, anterior temporal cortex; non-fluent variant, frontal operculum). The semantic and non-fluent variant groups additionally showed complex profiles of central parasympathetic and sympathetic autonomic involvement that overlapped signatures of emotional visual and categorization processing and extended (in the non-fluent group) to brainstem effector pathways. These findings open a window on the functional cerebral mechanisms underpinning complex socio-emotional phenotypes of frontotemporal dementia, with implications for novel physiological biomarker development.


Subject(s)
Affective Symptoms/pathology , Brain Mapping , Emotions/physiology , Frontotemporal Dementia/psychology , Magnetic Resonance Imaging , Nerve Net/pathology , Affective Symptoms/etiology , Affective Symptoms/physiopathology , Aged , Aphasia, Primary Progressive/pathology , Aphasia, Primary Progressive/physiopathology , Autonomic Nervous System/physiopathology , Facial Expression , Female , Frontotemporal Dementia/classification , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Heart Rate/physiology , Humans , Limbic System/pathology , Limbic System/physiopathology , Male , Middle Aged , Nerve Net/physiopathology , Neuropsychological Tests , Pupil/physiology
4.
Cortex ; 115: 357-370, 2019 06.
Article in English | MEDLINE | ID: mdl-30846199

ABSTRACT

BACKGROUND: Memory for music has attracted much recent interest in Alzheimer's disease but the underlying brain mechanisms have not been defined in patients directly. Here we addressed this issue in an Alzheimer's disease cohort using activation fMRI of two core musical memory systems. METHODS: We studied 34 patients with younger onset Alzheimer's disease led either by episodic memory decline (typical Alzheimer's disease) or by visuospatial impairment (posterior cortical atrophy) in relation to 19 age-matched healthy individuals. We designed a novel fMRI paradigm based on passive listening to melodies that were either previously familiar or unfamiliar (musical semantic memory) and either presented singly or repeated (incidental musical episodic memory). RESULTS: Both syndromic groups showed significant functional neuroanatomical alterations relative to the healthy control group. For musical semantic memory, disease-associated activation group differences were localised to right inferior frontal cortex (reduced activation in the group with memory-led Alzheimer's disease); while for incidental musical episodic memory, disease-associated activation group differences were localised to precuneus and posterior cingulate cortex (abnormally enhanced activation in the syndromic groups). In post-scan behavioural testing, both patient groups had a deficit of musical episodic memory relative to healthy controls whereas musical semantic memory was unimpaired. CONCLUSIONS: Our findings define functional neuroanatomical substrates for the differential involvement of musical semantic and incidental episodic memory in major phenotypes of Alzheimer's disease. The complex dynamic profile of brain activation group differences observed suggests that musical memory may be an informative probe of neural network function in Alzheimer's disease. These findings may guide the development of future musical interventions in dementia.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Memory/physiology , Music/psychology , Aged , Alzheimer Disease/psychology , Auditory Perception/physiology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
5.
Semin Neurol ; 39(2): 251-263, 2019 04.
Article in English | MEDLINE | ID: mdl-30925617

ABSTRACT

Frontotemporal dementias are a clinically, neuroanatomically, and pathologically diverse group of diseases that collectively constitute an important cause of young-onset dementia. Clinically, frontotemporal dementias characteristically strike capacities that define us as individuals, presenting broadly as disorders of social behavior or language. Neurobiologically, these diseases can be regarded as "molecular nexopathies," a paradigm for selective targeting and destruction of brain networks by pathogenic proteins. Mutations in three major genes collectively account for a substantial proportion of behavioral presentations, with far-reaching implications for the lives of families but also potential opportunities for presymptomatic diagnosis and intervention. Predicting molecular pathology from clinical and radiological phenotypes remains challenging; however, certain patterns have been identified, and genetically mediated forms of frontotemporal dementia have spearheaded this enterprise. Here we present a clinical roadmap for diagnosis and assessment of the frontotemporal dementias, motivated by our emerging understanding of the mechanisms by which pathogenic protein effects at the cellular level translate to abnormal neural network physiology and ultimately, complex clinical symptoms. We conclude by outlining principles of management and prospects for disease modification.


Subject(s)
Frontotemporal Dementia/diagnosis , Primary Progressive Nonfluent Aphasia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Humans , Primary Progressive Nonfluent Aphasia/genetics , Primary Progressive Nonfluent Aphasia/therapy
6.
JAMA Neurol ; 76(5): 607-611, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30742208

ABSTRACT

Importance: Despite being characterized as a disorder of language production, nonfluent/agrammatic variant primary progressive aphasia (nfvPPA) is frequently associated with auditory symptoms. However, to our knowledge, peripheral auditory function has not been defined in this condition. Objective: To assess peripheral hearing function in individuals with nfvPPA compared with healthy older individuals and patients with Alzheimer disease (AD). Design, Setting, and Participants: This cross-sectional single-center study was conducted at the Dementia Research Centre of University College London between August 2015 and July 2018. A consecutive cohort of patients with nfvPPA and patients with AD were compared with healthy control participants. No participant had substantial otological or cerebrovascular disease; all eligible patients fulfilling diagnostic criteria and able to comply with audiometry were included. Main Outcomes and Measures: We measured mean threshold sound levels required to detect pure tones at frequencies of 500, 1000, 2000, 4000, and 6000 Hz in the left and right ears separately; these were used to generate better-ear mean and worse-ear mean composite hearing threshold scores and interaural difference scores for each participant. All analyses were adjusted for participant age. Results: We studied 19 patients with nfvPPA (9 female; mean [SD] age, 70.3 [9.0] years), 20 patients with AD (9 female; mean [SD] age, 69.4 [8.1] years) and 34 control participants (15 female; mean [SD] age, 66.7 [6.3] years). The patients with nfvPPA had significantly higher scores than control participants on better-ear mean scores (patients with nfvPPA: mean [SD], 36.3 [9.4] decibels [dB]; control participants: 28.9 [7.3] dB; age-adjusted difference, 5.7 [95% CI, 1.4-10.0] dB; P = .01) and worse-ear mean scores (patients with nfvPPA: 42.2 [11.5] dB; control participants: 31.7 [8.1] dB; age-adjusted difference, 8.5 [95% CI, 3.6-13.4] dB; P = .001). The patients with nfvPPA also had significantly higher better-ear mean scores than patients with AD (patients with AD: mean [SD] 31.1 [7.5] dB; age-adjusted difference, 4.8 [95% CI, 0.0-9.6] dB; P = .048) and worse-ear mean scores (patients with AD: mean [SD], 33.8 [8.2] dB; age-adjusted difference, 7.8 [95% CI, 2.4-13.2] dB; P = .005). The difference scores (worse-ear mean minus better-ear mean) were significantly higher in the patients with nfvPPA (mean [SD], 5.9 [5.2] dB) than control participants (mean [SD], 2.8 [2.2] dB; age-adjusted difference, 2.8 [95% CI, 0.9-4.7] dB; P = .004) and patients with AD (mean [SD], 2.8 [2.1] dB; age-adjusted difference, 3.0 [95% CI, 0.9-5.1] dB; P = .005). Conclusions and Relevance: In this study, patients with nfvPPA performed worse on pure-tone audiometry than healthy older individuals or patients with AD, and the difference was not attributable to age or general disease factors. Cases of nfvPPA were additionally associated with increased functional interaural audiometric asymmetry. These findings suggest conjoint peripheral afferent and more central regulatory auditory dysfunction in individuals with nfvPPA.


Subject(s)
Auditory Pathways/physiopathology , Hearing Loss/physiopathology , Primary Progressive Nonfluent Aphasia/physiopathology , Aged , Alzheimer Disease/physiopathology , Audiometry, Pure-Tone , Case-Control Studies , Cross-Sectional Studies , Female , Hearing Loss/complications , Humans , Male , Middle Aged , Primary Progressive Nonfluent Aphasia/complications
7.
Front Neurosci ; 12: 815, 2018.
Article in English | MEDLINE | ID: mdl-30524219

ABSTRACT

The functional neuroanatomical mechanisms underpinning cognition in the normal older brain remain poorly defined, but have important implications for understanding the neurobiology of aging and the impact of neurodegenerative diseases. Auditory processing is an attractive model system for addressing these issues. Here, we used fMRI of melody processing to investigate auditory pattern processing in normal older individuals. We manipulated the temporal (rhythmic) structure and familiarity of melodies in a passive listening, 'sparse' fMRI protocol. A distributed cortico-subcortical network was activated by auditory stimulation compared with silence; and within this network, we identified separable signatures of anisochrony processing in bilateral posterior superior temporal lobes; melodic familiarity in bilateral anterior temporal and inferior frontal cortices; and melodic novelty in bilateral temporal and left parietal cortices. Left planum temporale emerged as a 'hub' region functionally partitioned for processing different melody dimensions. Activation of Heschl's gyrus by auditory stimulation correlated with the integrity of underlying cortical tissue architecture, measured using multi-parameter mapping. Our findings delineate neural substrates for analyzing perceptual and semantic properties of melodies in normal aging. Melody (auditory pattern) processing may be a useful candidate paradigm for assessing cerebral networks in the older brain and potentially, in neurodegenerative diseases of later life.

8.
Alzheimers Res Ther ; 10(1): 70, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30045755

ABSTRACT

BACKGROUND: Processing of degraded speech is a promising model for understanding communication under challenging listening conditions, core auditory deficits and residual capacity for perceptual learning and cerebral plasticity in major dementias. METHODS: We compared the processing of sine-wave-degraded speech in 26 patients with primary progressive aphasia (non-fluent, semantic, and logopenic variants), 10 patients with typical Alzheimer's disease and 17 healthy control subjects. Participants were required to identify sine-wave words that were more predictable (three-digit numbers) or less predictable (place names). The change in identification performance within each session indexed perceptual learning. Neuroanatomical associations of degraded speech processing were assessed using voxel-based morphometry. RESULTS: Patients with non-fluent and logopenic progressive aphasia and typical Alzheimer's disease showed impaired identification of sine-wave numbers, whereas all syndromic groups showed impaired identification of sine-wave place names. A significant overall identification advantage for numbers over place names was shown by patients with typical Alzheimer's disease, patients with semantic progressive aphasia and healthy control participants. All syndromic groups showed spontaneous perceptual learning effects for sine-wave numbers. For the combined patient cohort, grey matter correlates were identified across a distributed left hemisphere network extending beyond classical speech-processing cortices. CONCLUSIONS: These findings demonstrate resilience of auditory perceptual learning capacity across dementia syndromes, despite variably impaired perceptual decoding of degraded speech and reduced predictive integration of semantic knowledge. This work has implications for the neurobiology of dynamic sensory processing and plasticity in neurodegenerative diseases and for development of novel biomarkers and therapeutic interventions.


Subject(s)
Alzheimer Disease/physiopathology , Aphasia, Primary Progressive/physiopathology , Learning Disabilities/etiology , Perception/physiology , Speech/physiology , Acoustic Stimulation , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Aphasia, Primary Progressive/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
9.
Neuropsychologia ; 104: 144-156, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28811257

ABSTRACT

Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes.


Subject(s)
Auditory Perception/physiology , Conflict, Psychological , Emotions/physiology , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/psychology , Semantics , Acoustic Stimulation , Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/physiopathology , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Statistics, Nonparametric
10.
Alzheimers Res Ther ; 9(1): 53, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28750682

ABSTRACT

BACKGROUND: Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. METHODS: We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. RESULTS: Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. CONCLUSIONS: Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.


Subject(s)
Aphasia, Primary Progressive , Brain/pathology , Cognition Disorders/complications , Speech , Acoustic Stimulation , Aged , Aged, 80 and over , Aphasia, Primary Progressive/complications , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/pathology , Aphasia, Primary Progressive/psychology , Brain/diagnostic imaging , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Mental Status Schedule , Middle Aged , Psychoacoustics
11.
Neurobiol Aging ; 56: 190-201, 2017 08.
Article in English | MEDLINE | ID: mdl-28571652

ABSTRACT

The pathophysiology of primary progressive aphasias remains poorly understood. Here, we addressed this issue using activation fMRI in a cohort of 27 patients with primary progressive aphasia (nonfluent, semantic, and logopenic variants) versus 15 healthy controls. Participants listened passively to sequences of spoken syllables in which we manipulated 3-key auditory speech signal characteristics: temporal regularity, phonemic spectral structure, and pitch sequence entropy. Relative to healthy controls, nonfluent variant patients showed reduced activation of medial Heschl's gyrus in response to any auditory stimulation and reduced activation of anterior cingulate to temporal irregularity. Semantic variant patients had relatively reduced activation of caudate and anterior cingulate in response to increased entropy. Logopenic variant patients showed reduced activation of posterior superior temporal cortex to phonemic spectral structure. Taken together, our findings suggest that impaired processing of core speech signal attributes may drive particular progressive aphasia syndromes and could index a generic physiological mechanism of reduced computational efficiency relevant to all these syndromes, with implications for development of new biomarkers and therapeutic interventions.


Subject(s)
Aphasia, Primary Progressive/physiopathology , Speech/physiology , Acoustic Stimulation , Aged , Aphasia, Primary Progressive/diagnostic imaging , Cohort Studies , Female , Frontotemporal Dementia/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Semantics , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology
12.
Neurobiol Aging ; 39: 154-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923412

ABSTRACT

Deficits of auditory scene analysis accompany Alzheimer's disease (AD). However, the functional neuroanatomy of spatial sound processing has not been defined in AD. We addressed this using a "sparse" fMRI virtual auditory spatial paradigm in 14 patients with typical AD in relation to 16 healthy age-matched individuals. Sound stimulus sequences discretely varied perceived spatial location and pitch of the sound source in a factorial design. AD was associated with loss of differentiated cortical profiles of auditory location and pitch processing at the prescribed threshold, and significant group differences were identified for processing auditory spatial variation in posterior cingulate cortex (controls > AD) and the interaction of pitch and spatial variation in posterior insula (AD > controls). These findings build on emerging evidence for altered brain mechanisms of auditory scene analysis and suggest complex dysfunction of network hubs governing the interface of internal milieu and external environment in AD. Auditory spatial processing may be a sensitive probe of this interface and contribute to characterization of brain network failure in AD and other neurodegenerative syndromes.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/psychology , Gyrus Cinguli/pathology , Gyrus Cinguli/physiopathology , Spatial Processing , Aged , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pitch Perception
13.
Cortex ; 77: 13-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26889604

ABSTRACT

The meaning of sensory objects is often behaviourally and biologically salient and decoding of semantic salience is potentially vulnerable in dementia. However, it remains unclear how sensory semantic processing is linked to physiological mechanisms for coding object salience and how that linkage is affected by neurodegenerative diseases. Here we addressed this issue using the paradigm of complex sounds. We used pupillometry to compare physiological responses to real versus synthetic nonverbal sounds in patients with canonical dementia syndromes (behavioural variant frontotemporal dementia - bvFTD, semantic dementia - SD; progressive nonfluent aphasia - PNFA; typical Alzheimer's disease - AD) relative to healthy older individuals. Nonverbal auditory semantic competence was assessed using a novel within-modality sound classification task and neuroanatomical associations of pupillary responses were assessed using voxel-based morphometry (VBM) of patients' brain MR images. After taking affective stimulus factors into account, patients with SD and AD showed significantly increased pupil responses to real versus synthetic sounds relative to healthy controls. The bvFTD, SD and AD groups had a nonverbal auditory semantic deficit relative to healthy controls and nonverbal auditory semantic performance was inversely correlated with the magnitude of the enhanced pupil response to real versus synthetic sounds across the patient cohort. A region of interest analysis demonstrated neuroanatomical associations of overall pupil reactivity and differential pupil reactivity to sound semantic content in superior colliculus and left anterior temporal cortex respectively. Our findings suggest that autonomic coding of auditory semantic ambiguity in the setting of a damaged semantic system may constitute a novel physiological signature of neurodegenerative diseases.


Subject(s)
Frontotemporal Dementia/physiopathology , Frontotemporal Lobar Degeneration/physiopathology , Primary Progressive Nonfluent Aphasia/physiopathology , Recognition, Psychology/physiology , Temporal Lobe/physiopathology , Adult , Cognition/physiology , Female , Humans , Male , Neuropsychological Tests , Temporal Lobe/physiology , Young Adult
14.
Alzheimers Dement (Amst) ; 1(2): 170-178, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26634223

ABSTRACT

INTRODUCTION: Emotional behavioral disturbances are hallmarks of many dementias but their pathophysiology is poorly understood. Here we addressed this issue using the paradigm of emotionally salient sounds. METHODS: Pupil responses and affective valence ratings for nonverbal sounds of varying emotional salience were assessed in patients with behavioral variant frontotemporal dementia (bvFTD) (n = 14), semantic dementia (SD) (n = 10), progressive nonfluent aphasia (PNFA) (n = 12), and AD (n = 10) versus healthy age-matched individuals (n = 26). RESULTS: Referenced to healthy individuals, overall autonomic reactivity to sound was normal in Alzheimer's disease (AD) but reduced in other syndromes. Patients with bvFTD, SD, and AD showed altered coupling between pupillary and affective behavioral responses to emotionally salient sounds. DISCUSSION: Emotional sounds are a useful model system for analyzing how dementias affect the processing of salient environmental signals, with implications for defining pathophysiological mechanisms and novel biomarker development.

15.
Neuroimage Clin ; 7: 699-708, 2015.
Article in English | MEDLINE | ID: mdl-26029629

ABSTRACT

Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known 'cocktail party effect' as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory 'foreground' and 'background'. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology.


Subject(s)
Alzheimer Disease/physiopathology , Auditory Perception , Auditory Perceptual Disorders/physiopathology , Parietal Lobe/physiopathology , Temporal Lobe/physiopathology , Aged , Audiometry, Pure-Tone , Brain/physiopathology , Brain Mapping , Case-Control Studies , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Signal-To-Noise Ratio , Speech Perception
16.
Front Behav Neurosci ; 9: 73, 2015.
Article in English | MEDLINE | ID: mdl-25859194

ABSTRACT

Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

17.
Ann N Y Acad Sci ; 1337: 232-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25773639

ABSTRACT

Frontotemporal dementia is an important neurodegenerative disorder of younger life led by profound emotional and social dysfunction. Here we used fMRI to assess brain mechanisms of music emotion processing in a cohort of patients with frontotemporal dementia (n = 15) in relation to healthy age-matched individuals (n = 11). In a passive-listening paradigm, we manipulated levels of emotion processing in simple arpeggio chords (mode versus dissonance) and emotion modality (music versus human emotional vocalizations). A complex profile of disease-associated functional alterations was identified with separable signatures of musical mode, emotion level, and emotion modality within a common, distributed brain network, including posterior and anterior superior temporal and inferior frontal cortices and dorsal brainstem effector nuclei. Separable functional signatures were identified post-hoc in patients with and without abnormal craving for music (musicophilia): a model for specific abnormal emotional behaviors in frontotemporal dementia. Our findings indicate the potential of music to delineate neural mechanisms of altered emotion processing in dementias, with implications for future disease tracking and therapeutic strategies.


Subject(s)
Emotions , Frontotemporal Dementia/physiopathology , Magnetic Resonance Imaging , Music , Affective Symptoms/physiopathology , Aged , Auditory Perception , Brain/pathology , Brain Mapping , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged
18.
J Neurol Neurosurg Psychiatry ; 85(9): 1016-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24521566

ABSTRACT

BACKGROUND: Mutations in C9ORF72 are an important cause of frontotemporal dementia (FTD) and motor neuron disease. Accumulating evidence suggests that FTD associated with C9ORF72 mutations (C9ORF72-FTD) is distinguished clinically by early prominent neuropsychiatric features that might collectively reflect deranged body schema processing. However, the pathophysiology of C9ORF72-FTD has not been elucidated. METHODS: We undertook a detailed neurophysiological investigation of five patients with C9ORF72-FTD, in relation to patients with FTD occurring sporadically and on the basis of mutations in the microtubule-associated protein tau gene and healthy older individuals. We designed or adapted behavioural tasks systematically to assess aspects of somatosensory body schema processing (tactile discrimination, proprioceptive and body part illusions and self/non-self differentiation). RESULTS: Patients with C9ORF72-FTD selectively exhibited deficits at these levels of body schema processing in relation to healthy individuals and other patients with FTD. CONCLUSIONS: Altered body schema processing is a novel, generic pathophysiological mechanism that may link the distributed cortico-subcortical network previously implicated in C9ORF72-FTD with a wide range of neuropsychiatric and behavioural symptoms, and constitute a physiological marker of this neurodegenerative proteinopathy.


Subject(s)
Body Image/psychology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/psychology , Proteins/genetics , Aged , C9orf72 Protein , Case-Control Studies , Female , Humans , Illusions/psychology , Male , Middle Aged , Mutation , Self Concept , Tauopathies/genetics , Tauopathies/psychology , Touch Perception , tau Proteins/genetics
19.
Neuropsychologia ; 51(9): 1709-15, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23721780

ABSTRACT

As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the fractionation of brain mechanisms for complex sound analysis, and for the stratification of progressive aphasia syndromes according to the signature of nonverbal auditory deficits they produce.


Subject(s)
Agnosia/physiopathology , Aphasia/physiopathology , Auditory Perception/physiology , Semantics , Speech , Agnosia/etiology , Agnosia/pathology , Aphasia/complications , Aphasia/pathology , Female , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Humans , Middle Aged , Recognition, Psychology/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...