Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 459(3): 427-39, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24517375

ABSTRACT

The MAPK (mitogen-activated protein kinase) p38 is an important mediator of inflammation and of inflammatory and neuropathic pain. We have described recently that docking-groove-dependent interactions are important for p38 MAPK-mediated signal transduction. Thus virtual screening was performed to identify putative docking-groove-targeted p38 MAPK inhibitors. Several compounds of the benzo-oxadiazol family were identified with low micromolar inhibitory activity both in a p38 MAPK activity assay, and in THP-1 human monocytes acting as inhibitors of LPS (lipopolysaccharide)-induced TNFα (tumour necrosis factor α) secretion. Positions 2 and 5 in the phenyl ring are essential for the described inhibitory activity with a chloride in position 5 and a methyl group in position 2 yielding the best results, giving an IC50 value of 1.8 µM (FGA-19 compound). Notably, FGA-19 exerted a potent and long-lasting analgesic effect in vivo when tested in a mouse model of inflammatory hyperalgesia. A single intrathecal injection of FGA-19 completely resolved hyperalgesia, being 10-fold as potent and displaying longer lasting effects than the established p38 MAPK inhibitor SB239063. FGA-19 also reversed persistent pain in a model of post-inflammatory hyperalgesia in LysM (lysozyme M)-GRK2 (G-protein-coupled-receptor kinase)(+/-) mice. These potent in vivo effects suggested p38 MAPK docking-site-targeted inhibitors as a potential novel strategy for the treatment of inflammatory pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Hyperalgesia/drug therapy , Macrophages/drug effects , Monocytes/drug effects , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Analgesics/chemistry , Analgesics/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cell Line , Cells, Cultured , Drug Evaluation, Preclinical , Female , Humans , Hyperalgesia/immunology , Hyperalgesia/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Molecular Dynamics Simulation , Monocytes/immunology , Monocytes/metabolism , Oxadiazoles/chemistry , Oxadiazoles/metabolism , Oxadiazoles/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Random Allocation , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
2.
J Org Chem ; 78(11): 5717-22, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23641667

ABSTRACT

We report a highly diastereoselective synthesis of vicinal diamines by the treatment of nitroepoxides with primary amines and then a reducing agent. When using a chiral primary amine, racemic nitroepoxides are transformed into chiral diamines as a single enantiomers (>95:5 er) through a dynamic kinetic asymmetric transformation (DYKAT). The overall process is a one-pot procedure combining the exposure of nitroepoxides to chiral amines to afford diastereomeric mixtures of aminoimines and subsequent stereoselective imine reduction.


Subject(s)
Amines/chemistry , Amines/chemical synthesis , Epoxy Compounds/chemistry , Thermodynamics , Amination , Kinetics , Molecular Structure , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...