Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7044, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35487926

ABSTRACT

Osteoporosis affects millions of people worldwide. As such, this study assessed the macrophage-dependent in vitro anti-osteoporosis, phytochemical profile and hepatotoxicity effects in zebrafish larvae of the stem bark extracts of P. africana. Mouse bone marrow macrophages (BMM) cells were plated in 96-well plates and treated with P. africana methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml for 24 h. The osteoclast tartrate-resistant acid phosphatase (TRAP) activity and cell viability were measured. Lipopolysaccharides (LPS) induced Nitrite (NO) and interleukin-6 (IL-6) production inhibitory effects of P. africana bark extracts (Methanolic, 150 µg/ml) and ß-sitosterol (100 µM) were conducted using RAW 264.7 cells. Additionally, inhibition of IL-1ß secretion and TRAP activity were determined for chlorogenic acid, catechin, naringenin and ß-sitosterol. For toxicity study, zebrafish larvae were exposed to different concentrations of 25, 50, 100, and 200 µg/ml P. africana methanolic, ethanolic and water bark extracts. Dimethyl sulfoxide (0.05%) was used as a negative control and tamoxifen (5 µM) and dexamethasone (40 µM or 80 µM) were positive controls. The methanolic P. africana extracts significantly inhibited (p < 0.001) TRAP activity at all concentrations and at 12.5 and 25 µg/ml, the extract exhibited significant (p < 0.05) BMM cell viability. NO production was significantly inhibited (all p < 0.0001) by the sample. IL-6 secretion was significantly inhibited by P. africana methanolic extract (p < 0.0001) and ß-sitosterol (p < 0.0001) and further, chlorogenic acid and naringenin remarkably inhibited IL-1ß production. The P. africana methanolic extract significantly inhibited RANKL-induced TRAP activity. The phytochemical study of P. africana stem bark revealed a number of chemical compounds with anti-osteoporosis activity. There was no observed hepatocyte apoptosis in the liver of zebrafish larvae. In conclusion, the stem bark of P. africana is non-toxic to the liver and its inhibition of TRAP activity makes it an important source for future anti-osteoporosis drug development.


Subject(s)
Osteoporosis , Prunus africana , Animals , Chlorogenic Acid/analysis , Gas Chromatography-Mass Spectrometry , Humans , Interleukin-6/analysis , Methanol/analysis , Mice , Osteoporosis/drug therapy , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Bark/chemistry , Plant Extracts/chemistry , RAW 264.7 Cells , Zebrafish
2.
Article in English | MEDLINE | ID: mdl-35116070

ABSTRACT

Prostate cancer is one of the major causes of cancer-related deaths among men globally. Medicinal plants have been explored as alternative treatment options. Herein, we assessed the in vitro cytotoxic effects of 70% ethanolic root extracts of six-month-old micropropagated Prunus africana (PIR) on PC-3 prostate cancer cells as an alternative to the traditionally used P. africana stem-bark extract (PWS) treatment. In vitro assays on PC-3 cells included annexin-V and propidium iodide staining, DAPI staining, and caspase-3 activity analysis through western blotting. PC-3 cells were exposed to PWS and PIR at different concentrations, and dose-dependent antiprostate cancer effects were observed. PC-3 cell viability was determined using CCK-8 assay, which yielded IC50 values of 52.30 and 82.40 µg/mL for PWS and PIR, respectively. Annexin-V and PI staining showed dose-dependent apoptosis of PC-3 cells. Significant (p < 0.001) percent of DAPI-stained apoptotic PC-3 cells were observed in PWS, PIR, and doxorubicin treatment compared with the negative control. PWS treatment substantially elevated cleaved caspase-3 levels in PC-3 cells compared with the PIR treatment. These results provide evidence for the antiprostate cancer potential of PIR and sets a basis for further research to enhance future utilization of roots of young micropropagated P. africana for prostate cancer treatment as an alternative to stem bark. Moreover, micropropagation approach may help provide the required raw materials and hence reduce the demand for P. africana from endangered wild population.

3.
Article in English | MEDLINE | ID: mdl-33029177

ABSTRACT

Osteoporosis is one of the main health problems in the world today characterized by low bone mass and deterioration in bone microarchitecture. In recent years, the use of natural products approach to treat it has been in the increase. In this study, in vitro antiosteoporosis activity and hepatotoxicity of P. jamasakura bark extracts were evaluated. Methods. Mouse bone marrow macrophage (BMM) cells were incubated with tartrate-resistant acid phosphate (TRAP) buffers and p-nitrophenyl phosphate and cultured with different P. jamasakura bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml in the presence of the receptor activator of nuclear factor kappa-Β ligand (RANKL) for 6 days. The osteoclast TRAP activity and cell viability were measured. Nitric oxide (NO) assay was conducted using murine macrophage-like RAW 264.7 cells treated with P. jamasakura ethanolic and methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, 50, 100, and 200 µg/ml. For hepatotoxicity assessment, zebrafish larvae were exposed to P. jamasakura bark extracts, 0.05% dimethyl sulfoxide as a negative control, and 5 µM tamoxifen as a positive control. The surviving larvae were anesthetized and assessed for hepatocyte apoptosis. Results. TRAP activity was significantly inhibited (p < 0.001) at all concentrations of P. jamasakura extracts compared to the control treatment. At 50 µg/ml, both ethanolic and methanolic extracts of P. jamasakura exhibited significant (p < 0.01) BMM cell viability compared to the control treatment. P. jamasakura ethanolic and methanolic extracts had significant inhibitory (p < 0.01) effects on lipopolysaccharide (LPS)-induced NO production at 200 µg/ml and exhibited significant (p < 0.01) and (p < 0.05) stimulative effects, respectively, on RAW 264.7 cell viability. No overt hepatotoxicity was observed in the liver of zebrafish larvae in any of the treatments. Conclusion. The TRAP activity of P. jamasakura bark gives a foundation for further studies to enhance future development of antiosteoporosis drug.

4.
J Diabetes Res ; 2016: 8727590, 2016.
Article in English | MEDLINE | ID: mdl-27069932

ABSTRACT

BACKGROUND: Medicinal plants offer cheaper and safer treatment options to current diabetic drugs. The present study evaluated the effect of aqueous root bark extract of Zanthoxylum chalybeum on oral glucose tolerance and pancreas histopathology in alloxanized rats. METHOD: Diabetes was induced in rats by administration of alloxan monohydrate. Root extract of Z. chalybeum was administered to rats at 200 and 400 mg/kg BW daily for 28 days. Blood glucose was measured by glucometer and pancreatic histopathology evaluated microscopically. RESULTS: Initial increase was observed in blood glucose of the rats after oral administration of glucose from time zero. Two hours after treatment with Z. chalybeum, a significant reduction in blood glucose was observed within treatment groups (p < 0.05) compared to 0.5 hr and 1 hr. There was no significant difference between treatment group receiving 400mg/Kg BW extract and the normal groups (p = 0.27), implying that the former group recovered and were able to regulate their blood sugar, possibly via uptake of glucose into cells. The reversal in pancreatic histopathology further supports the protective effect of Z. chalybeum extract towards diabetic damage. CONCLUSION: Extract of Z. chalybeum is effective in controlling blood glucose in diabetes and protecting pancreatic tissues from diabetic damage.


Subject(s)
Alloxan , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Pancreas/drug effects , Plant Extracts/pharmacology , Zanthoxylum/chemistry , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/diagnosis , Female , Hypoglycemic Agents/isolation & purification , Male , Pancreas/metabolism , Pancreas/pathology , Phytotherapy , Plant Bark , Plant Extracts/isolation & purification , Plant Roots , Plants, Medicinal , Rats, Wistar , Time Factors
5.
Afr Health Sci ; 15(3): 828-34, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26957971

ABSTRACT

INTRODUCTION: Artemisia annua plant from the family Asteracea is a powerful antimalarial plant introduced to Uganda around 2003. In addition to the artemisinin component, the plant also contains flavonoids which work in synergy to artemisinin against malaria parasites. The plant also contains aromatic oils which repel mosquitoes. In this paper we report the variations in antimalarial components of A. annua samples from the regions cultivating it in Uganda. METHODS: Artemisia annua samples were obtained from three regions that cultivated the plant at the time of this study. The samples were brought to laboratory, authenticated and processed. The levels of artemisinin, total flavonoids and aromatic components were quantified using high performance thin layer chromatography, ultra violet spectrophotometry and gas chromatography respectively. RESULTS: Artemisinin and total flavonoids levels were higher in samples obtained from high land areas (western and south western region) compared to that obtained from lowland regions (central) i.e 0.8% Vs 0.4% and 2.6% Vs 1.5% respectively. The aromatic oils (mosquito repellent components) were similar with camphor component being highest and levels ranging from 75.4% to 79.0%. CONCLUSION: Our findings show that the active components in Artemisia annua cultivated and used in the Uganda vary with geographical regions and this calls for standardisation by source.


Subject(s)
Antimalarials/chemistry , Artemisia annua/chemistry , Artemisia annua/classification , Artemisinins/isolation & purification , Chromatography, Thin Layer/methods , Flavonoids/isolation & purification , Plant Leaves/chemistry , Humans , Uganda
6.
Afr Health Sci ; 11(3): 524-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22275949

ABSTRACT

BACKGROUND: Medicinal plants in Uganda and other developing countries have been scientifically demonstrated to have medicinal benefits but few or none have been translated to products for clinical use. Most herbal products developed by local herbalists and sold to the public are not standardized and lack efficacy and safety data to support use. OBJECTIVE: To formulate from two Ugandan medicinal plants a herbal product for wound management and test its preclinical safety and efficacy using rat models. METHODS: Thirty (30) Wistar albino rats were randomly divided into three groups and wounds were surgically created on the mid-dorsal region. The wounds were treated topically with distilled water (group I), Jena(®) (group II)and Neomycin sulfate cream (group III). The effects of the treatments on rate of wound closure, epithelialisation time and histological organization of tissue were assessed. RESULTS: The herbal formulation (Jena) had a significantly higher rate of wound closure than neomycin (p<0.05) which itself was better than distilled water. Epithelialisation time was also significantly shorter for the herbal product (p<0.01). Histological picture revealed more collagen fibers, less inflammation and better tissue remodeling for rats treated with herbal product. CONCLUSION: The herbal formulation Jena(®) systematically designed and formulated based on two Ugandan medicinal plants is according to this study better than neomycin and probably other imported products for wound management in Uganda. We recommend its trial in a clinical setting as an alternative in wound management.


Subject(s)
Medicine, African Traditional , Phytotherapy , Wounds and Injuries/drug therapy , Animals , Disease Models, Animal , Magnoliaceae , Male , Medicine, African Traditional/adverse effects , Medicine, African Traditional/methods , Phytotherapy/adverse effects , Phytotherapy/methods , Plant Leaves , Plant Roots , Rats , Rats, Wistar , Uganda , Wound Healing/drug effects , Zanthoxylum
SELECTION OF CITATIONS
SEARCH DETAIL
...