Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37503260

ABSTRACT

Background: The Global Health community aims to eliminate soil-transmitted helminth (STH) infections by 2030. Current preventive methods such as Mass Drug Administration, WASH practices, and health education needs to be complimented to halt transmission. We tracked the movement of hookworm-infected and non-infected persons and investigated soil factors in the places they frequented within an endemic community to further understand the role of human movement and sources of infections. Methods: 59 positive and negative participants wore GPS tracking devices for 10 consecutive days and their movement data captured in real time. The data was overlaid on the community map to determine where each group differentially spent most of their time. Soil samples were collected from these identified sites and other communal places. Physical and chemical properties were determined for each sample using standard methods and helminth eggs cultured into larvae using the Baermann technique. Bivariate and multivariate analyses were used to determine associations between larvae counts and soil factors. Helminth species were identified with metagenomic sequencing and their distributions mapped to sampling sites in the community. Results: The study found that there was no significant difference in the average larvae counts in soil between sites assessed by infected and non-infected participants (P=0.59). However, soil factors, such as pH, carbon and sandy-loamy texture were associated with high larvae counts (P<0.001) while nitrogen and clay content were associated with low counts(P<0.001). The dominant helminth species identified were Panagrolaimus superbus (an anhydrobiotic helminth), Parastrongyloides trichosuri (a parasite of small mammals), Trichuris trichuria (whipworm), and Ancylostoma caninum (dog hookworm). Notably, no Necator americanus was identified in any soil sample. Conclusion: This study provides important insights into the association between soil factors and soil-transmitted helminths. These findings contribute to our understanding of STH epidemiology and support evidence-based decision-making for elimination strategies.

2.
Comput Biol Chem ; 101: 107766, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088668

ABSTRACT

Ebola virus disease (EVD) is a highly virulent and often lethal illness that affects humans through contact with the body fluid of infected persons. Glycoprotein and matrix protein VP40 play essential roles in the virus life cycle within the host. Whilst glycoprotein mediates the entry and fusion of the virus with the host cell membrane, VP40 is also responsible for viral particle assembly and budding. This study aimed at developing machine learning models to predict small molecules as possible anti-Ebola virus compounds capable of inhibiting the activities of GP and VP40 using Ebola virus (EBOV) cell entry inhibitors from the PubChem database as training data. Predictive models were developed using five algorithms comprising random forest (RF), support vector machine (SVM), naïve Bayes (NB), k-nearest neighbor (kNN), and logistic regression (LR). The models were evaluated using a 10-fold cross-validation technique and the algorithm with the best performance was the random forest model with an accuracy of 89 %, an F1 score of 0.9, and a receiver operating characteristic curve (ROC curve) showing the area under the curve (AUC) score of 0.95. LR and SVM models also showed plausible performances with overall accuracy values of 0.84 and 0.86, respectively. The models, RF, LR, and SVM were deployed as a web server known as EBOLApred accessible via http://197.255.126.13:8000/.


Subject(s)
Ebolavirus , Humans , Bayes Theorem , Virus Internalization , Machine Learning , Glycoproteins
3.
Mol Divers ; 26(3): 1597-1607, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34351547

ABSTRACT

Schistosomiasis is a neglected tropical disease caused by helminths of the Schistosoma genus. Despite its high morbidity and socio-economic burden, therapeutics are just a handful with praziquantel being the main drug. Praziquantel is an old drug registered for human use in 1982 and has since been administered en masse for chemotherapy, risking the development of resistance, thus the need for new drugs with different mechanisms of action. This review examines the use of machine learning (ML) in this era of big data to aid in the prediction of novel antischistosomal molecules. It first discusses the challenges of drug discovery in schistosomiasis. Explanations are then offered for big data, its characteristics and then, some open databases where large biochemical data on schistosomiasis can be obtained for ML model development are examined. The concepts of artificial intelligence, ML, and deep learning and their drug applications are explored in schistosomiasis. The use of binary classification in predicting antischistosomal compounds and some algorithms that have been applied including random forest and naive Bayesian are discussed. For this review, some deep learning algorithms (deep neural networks) are proposed as novel algorithms for predicting antischistosomal molecules via binary classification. Databases specifically designed for housing bioactivity data on antischistosomal molecules enriched with functional genomic datasets and ontologies are thus urgently needed for developing predictive ML models. This shows the application of machine learning techniques for the discovery of novel antischistosomal small molecules via binary classification in the era of big data.


Subject(s)
Praziquantel , Schistosomiasis , Artificial Intelligence , Bayes Theorem , Big Data , Humans , Machine Learning , Praziquantel/therapeutic use , Schistosomiasis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...