Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 798, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179969

ABSTRACT

BACKGROUND: In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS: Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS: These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.


Subject(s)
Cinnamates , Depsides , Rosmarinic Acid , Salt Tolerance , Salvia officinalis , Signal Transduction , Salvia officinalis/metabolism , Salvia officinalis/physiology , Salvia officinalis/drug effects , Salvia officinalis/genetics , Depsides/metabolism , Cinnamates/metabolism , Abietanes/metabolism , Hydrogen Peroxide/metabolism , Lasers , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Gene Expression Regulation, Plant
2.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735908

ABSTRACT

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Subject(s)
Cadmium , Catharanthus , Gene Expression Regulation, Plant , Melatonin , Nitric Oxide , Oxidative Stress , Plant Leaves , Vinblastine , Catharanthus/metabolism , Catharanthus/genetics , Catharanthus/drug effects , Nitric Oxide/metabolism , Cadmium/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Vinblastine/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
3.
Protoplasma ; 260(1): 103-116, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35471709

ABSTRACT

In the current study the role of H2O2 in He-Ne laser-induced effects on seed germination and post-germinative performance of Salvia officinalis seedlings was assessed under both non-stress and saline conditions. Salinity had adverse impacts on seed germination and root length and decreased seed germination tolerance index. Seed priming with H2O2 and He-Ne laser impacted the seed germination and vigoration in a dose-dependent manner. The optimal effects were gathered by energy dose of 6 J/cm2 laser and concentration of 5 mM H2O2. These pre-treatments enhanced seed germination due to increasing contents of total soluble and reducing sugars and the amylase activity in seeds and improved seedling performance under saline and non-saline conditions. Furthermore, Phy B transcripts were upregulated, salt-accrued oxidative stress was mitigated, and the activities of POD and CAT increased in seedlings primed with H2O2 and laser. Interestingly, applying diphenyleneiodonium (DPI as an inhibitor of NADPH oxidase activity) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) arrested the upregulation of phy B gene and abolished stimulatory impact of laser priming on the aforementioned attributes under both non-stress and saline conditions. These novel findings suggest that H2O2 as a downstream signal modulates the impacts of He-Ne laser on seed germination, seedling performance and salt acclimation in sage seedlings, and likely phy B also is involved in these responses.


Subject(s)
Phytochrome , Salvia officinalis , Germination , Hydrogen Peroxide/pharmacology , Lasers , Salt Tolerance , Seedlings , Seeds , Helium , Neon
4.
Protoplasma ; 259(4): 905-916, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34596758

ABSTRACT

The individual impact of silicon (Si) and nitric oxide (NO) on secondary metabolism in several plant species has been reported, but their combined effect has never been evaluated yet. Therefore, in this study, single and combined impacts of NO and Si on the biosynthesis of rosmarinic acid (RA) and essential oil (EO) content in leaves of Salvia officinalis were investigated under both non-stress and Cu stress conditions. The results indicated that high Cu concentration decreased biomass and the content of polyphenols, but elevated electrolyte leakage, while lower Cu concentrations, especially 200 µM Cu, increased the content of polyphenols, EO, and antioxidant capacity in leaves of S. officinalis. The foliar application of sodium silicate (1 mM Si) and sodium nitroprusside (200 µM SNP as a NO donor) alone and particularly in combination improved shoot dry biomass, restored chlorophyll and carotenoids, increased EO content, the amounts of flavonoids, and phenolic compounds especially RA, and enhanced antioxidant capacity in the leaves of S. officinalis under both non-stress and Cu stress conditions. Copper treatment increased NO content, upregulated expression of PAL, TAT, and RAS genes, and enhanced phenylalanine ammonia-lyase activity in the leaves, which were responsible for improving the production of phenolic compounds, particularly rosmarinic acid. Foliar spraying with Si and SNP intensified these attributes. All responses were more pronounced when NO and Si were simultaneously applied under Cu stress. These findings suggest that NO and Si synergistically modulate secondary metabolism through upregulation of related gene expression and enzyme activities under both non-stress and Cu stress conditions.


Subject(s)
Oils, Volatile , Salvia officinalis , Antioxidants/metabolism , Cinnamates , Depsides , Nitric Oxide/metabolism , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Polyphenols/metabolism , Salvia officinalis/genetics , Salvia officinalis/metabolism , Silicon , Rosmarinic Acid
5.
Plant Physiol Biochem ; 162: 752-761, 2021 May.
Article in English | MEDLINE | ID: mdl-33799186

ABSTRACT

In this study, the role of nitric oxide (NO) burst in modulating Si-induced defensive responses in leaves and roots of Salvia officinalis under copper (Cu) stress were investigated. The result showed that 400 µM Cu markedly reduced shoot dry weight, but increased electrolyte leakage (EL) in leaves and both Si and sodium nitroprusside (SNP as the NO donor) improved these attributes in a dose-dependent manner. Interestingly, Cu toxicity systemically boosted a NO burst in both roots and shoots and applying Si and SNP markedly intensified it. The application of Si and SNP alone as well as their combination improved growth parameters and systemically alleviated Cu-induced lipid peroxidation and H2O2 accumulation through lowering Cu accumulation, increasing proline content, enhancing the activities of catalase (CAT) and superoxide dismutase (SOD) in both roots and leaves and up-regulating expression of SOD gene in leaves of S. officinalis. NO generation was substantially arrested and the responses induced by Si were significantly suppressed by pretreatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) as a NO scavenger, Nx-Nitro- L-arginine methyl ester hydrochloride (L-NAME) as a nitric oxide synthase inhibitor, and tungstate as a nitrate reductase inhibitor. These novel results indicate that Si can induce Cu tolerance through triggering NO generation which systemically modulates defensive reactions in both roots and leaves of Salvia officinalis.


Subject(s)
Nitric Oxide , Salvia officinalis , Antioxidants , Copper/toxicity , Hydrogen Peroxide , Nitroprusside/pharmacology , Plant Roots , Silicon
6.
Plant Physiol Biochem ; 143: 286-298, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31539758

ABSTRACT

In this study, the effect of seed priming with sodium hydro sulfide (NaHS) and CaCl2 as well as the possible relationship between them in inducing post-germinative cross-adaptation in zucchini seedlings (cv Courgette d'Italie) were investigated. Results showed that Ni toxicity reduced plant growth and photosynthetic pigments, decreased the content of ascorbate (AsA) and total thiols, increased hydrogen peroxide (H2O2) content and electrolyte leakage (EL), up-regulated the transcription levels of Ca2+-dependent protein kinase (CDPK) and phytochelatin (PCs) genes and elevated H2S content in leaves of zucchini seedlings. Individual or combined seed priming with Ca2+ and NaHS improved the content of photosynthetic pigments and seedling biomass, reduced H2O2 content and EL, increased the content of AsA and total thiols, decreased ascorbate peroxidase activity and enhanced glutathione reductase activity in leaves. These findings suggest the last time effect of seed priming with Ca2+ and NaHS on inducing cross-adaptation in seedlings under Ni stress. H2S accumulation and other responses induced with Ca2+ in leaves were weakened with hypotaurine (HT as H2S scavenger), denoting seed priming with Ca2+ established cross-adaptation in a H2S-dependent manner. Seed priming with NaHS amplified CDPK transcripts in leaves of seedlings and seed priming with ethylene glycol tetraacetic acid (as Ca2+ chelator), lanthanum chloride and verapamil (as plasma membrane channel blockers) reduced transcript levels of CDPK and PCs genes and reversed impacts of seed priming with NaHS. These results indicated that the cross-adaptation induced with NaHS is mediated through Ca2+ signaling. Overall our findings suggest that two-side cross-talk between Ca2+ and H2S is involved in the acquisition of a signal memory in seed embryo cells which can be employed upon a later Ni-exposure and more strongly enhance AsA-GSH cycle, redox homeostasis and phytochelatin transcripts in leaves of zucchini seedlings grown from primed seeds.


Subject(s)
Ascorbic Acid/metabolism , Calcium/pharmacology , Hydrogen Sulfide/pharmacology , Nickel/toxicity , Seedlings/drug effects , Seedlings/metabolism , Seeds/metabolism , Glutathione/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Seeds/drug effects
7.
J Plant Physiol ; 228: 75-84, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29870881

ABSTRACT

Silver nanoparticles (AgNPs) are one of the most widely-used nanomaterials, which are toxic and can cause physiological disorders in plants. The aim of the present study was to investigate whether a possible signaling link between heme oxygenase (HO) and nitric oxide (NO) is implicated in alleviating the toxicity of AgNPs as well as AgNO3. The results showed that exposure to 400 mg L-1 of AgNPs or AgNO3 reduced the chlorophyll content and the growth parameters in Brassica nigra. Data on Ag accumulation as well as the evaluation of lipid peroxidation and the H2O2 content in roots and shoots revealed that AgNP exerted more toxicity than AgNO3. Applying AgNP and AgNO3, respectively, increased HO transcripts by 87.5 and 37.3% and elevated the endogenous NO content 51.8 and 28.5%. The application of both hematin (as an inducer of HO) and sodium nitroprusside (SNP, as a NO donor) reversed the chlorosis and improved plant growth under AgNP and Ag+ ions stresses. Hematin decreased Ag accumulation in plants, indicating that this compound triggered an avoidance mechanism. Hematin and SNP enhanced the activities of antioxidant enzymes and proline accumulation, in parallel to increasing HO transcripts and NO release levels in the roots. ZnPPIX, as the inhibitor of HO, and cPTIO, as the specific NO scavenger, differentially blocked these effects. These findings revealed for the first time that HO might confer an increased tolerance to AgNP by activating the antioxidant systems, which was partially mediated by NO signal.


Subject(s)
Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase-1/metabolism , Metal Nanoparticles/chemistry , Mustard Plant/metabolism , Nitric Oxide/metabolism , Silver/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1/genetics , Metal Nanoparticles/toxicity , Mustard Plant/drug effects , Silver Nitrate/chemistry , Silver Nitrate/toxicity
8.
Ecotoxicol Environ Saf ; 113: 259-70, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25528376

ABSTRACT

Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials, although the mechanisms of AgNP toxicity in terrestrial plants is still unclear. We compared the toxic effects of AgNPs and AgNO3 on Brassica nigra seed germination at physiological and molecular levels. Both AgNPs and AgNO3 inhibited seed germination, lipase activity, soluble and reducing sugar contents in germinating seeds and seedlings. These reductions were more pronounced in AgNP treatments than AgNO3 treatments. Application of 200-400mg/L both AgNPs and AgNO3 increased transcription of heme oxygenase-1. However, at 800, 1600 mg/L, AgNPs or AgNO3 suppressed HO-1 expression. At 400mg/L, AgNPs or AgNO3-induced inhibitory effects on seed germination and were ameliorated by the HO-1 inducer, hematin, or NO donor, sodium nitroprusside (SNP). Additionally, 4 µM hematin and 400 µM SNP were able to markedly boost the HO/NO system. However, the addition of the HO-1 inhibitor (ZnPPIX) or the specific scavenger of NO (cPTIO) not only reversed the protective effects conferred by hematin, but also blocked the up-regulation of HO activity. In addition, hematin-drived NO production in B. niger seeds under AgNPs was confirmed. Our results at physiological and molecular levels suggested that AgNPs were more toxic than AgNO3. Based on these results, for the first time, we suggest that endogenous HO is needed to alleviate AgNPs-induced germination inhibition, which might have a possible interaction with NO.


Subject(s)
Germination/drug effects , Hemin/administration & dosage , Mustard Plant/drug effects , Nitroprusside/administration & dosage , Silver Nitrate/toxicity , Silver/toxicity , Heme Oxygenase (Decyclizing)/metabolism , Lipase/drug effects , Metal Nanoparticles/toxicity , Mustard Plant/enzymology , Mustard Plant/growth & development , Nitric Oxide/metabolism , Plants/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects , Silver/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL