Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Nano Lett ; 23(15): 6944-6950, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498750

ABSTRACT

The nature of superconductivity and its interplay with strong spin-orbit coupling at the KTaO3(111) interfaces remain a subject of debate. To address this problem, we grew epitaxial LaMnO3/KTaO3(111) heterostructures. We show that superconductivity is robust against the in-plane magnetic field, with the critical field of superconductivity reaching ∼25 T in optimally doped heterostructures. The superconducting order parameter is highly sensitive to the carrier density. We argue that spin-orbit coupling drives the formation of anomalous quasiparticles with vanishing magnetic moment, providing significant condensate immunity against magnetic fields beyond the Pauli paramagnetic limit. These results offer design opportunities for superconductors with extreme resilience against the applied magnetic fields.

3.
Sci Adv ; 9(7): eadf1414, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36791191

ABSTRACT

A two-dimensional, anisotropic superconductivity was recently found at the KTaO3(111) interfaces. The nature of the anisotropic superconducting transition remains a subject of debate. To investigate the origins of the observed behavior, we grew epitaxial KTaO3(111)-based heterostructures. We show that the superconductivity is robust against the in-plane magnetic field and violates the Pauli limit. We also show that the Cooper pairs are more resilient when the bias is along [11[Formula: see text]] (I ∥ [11[Formula: see text]]) and the magnetic field is along [1[Formula: see text]0] (B ∥ [1[Formula: see text]0]). We discuss the anisotropic nature of superconductivity in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. The results point to future opportunities to enhance superconducting transition temperatures and critical fields in crystalline, two-dimensional superconductors with strong spin-orbit coupling.

4.
Phys Rev Lett ; 125(8): 087601, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909797

ABSTRACT

SrTiO_{3} is an incipient ferroelectric that is believed to exhibit a prototype displacive, soft mode ferroelectric transition when subjected to mechanical stress or alloying. We use high-angle annular dark-field imaging in scanning transmission electron microscopy to reveal local polar regions in the room-temperature, paraelectric phase of strained SrTiO_{3} films, which undergo a ferroelectric transition at low temperatures. These films contain nanometer-sized domains in which the Ti columns are displaced. In contrast, these nanodomains are absent in unstrained films, which do not become ferroelectric. The results show that the ferroelectric transition of strained SrTiO_{3} is an order-disorder transition. We discuss the impact of the results on the nature of the ferroelectric transition of SrTiO_{3}.

5.
Nano Lett ; 20(9): 6542-6547, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32786945

ABSTRACT

The mechanisms by which itinerant carriers compete with polar crystal distortions are a key unresolved issue for polar superconductors, which offer new routes to unconventional Cooper pairing. Strained, doped SrTiO3 films undergo successive ferroelectric and superconducting transitions, making them ideal candidates to elucidate the nature of this competition. Here, we reveal these interactions using scanning transmission electron microscopy studies of the evolution of polar nanodomains as a function of doping. These nanodomains are a precursor to the ferroelectric phase and a measure of long-range Coulomb interactions. With increasing doping, the magnitude of the polar displacements, the nanodomain size, and the Curie temperature are systematically suppressed. In addition, we show that disorder caused by the dopant atoms themselves presents a second contribution to the destabilization of the ferroelectric state. The results provide evidence for two distinct mechanisms that suppress the polar transition with doping in a ferroelectric superconductor.

6.
Phys Rev Mater ; 4(5)2020 May.
Article in English | MEDLINE | ID: mdl-34142004

ABSTRACT

We report on the evolution of the average and depth-dependent magnetic order in thin-film samples of biaxially stressed and electron-doped EuTiO3 for samples across a doping range < 0.1 to 7.8 × 1020 cm-3. Under an applied in-plane magnetic field, the G-type antiferromagnetic ground state undergoes a continuous spin-flop phase transition into in-plane, field-polarized ferromagnetism. The critical field for ferromagnetism slightly decreases with an increasing number of free carriers, yet the field evolution of the spin-flop transition is qualitatively similar across the doping range. Unexpectedly, we observe interfacial ferromagnetism with saturated Eu2+ moments at the substrate interface at low fields preceding ferromagnetic saturation throughout the bulk of the degenerate semiconductor film. We discuss the implications of these findings for the unusual magnetotransport properties of this compound.

7.
Nat Commun ; 10(1): 5534, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797932

ABSTRACT

The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, [Formula: see text], is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases.

8.
Sci Adv ; 5(4): eaaw0120, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31032417

ABSTRACT

The nature of superconductivity in SrTiO3, the first oxide superconductor to be discovered, remains a subject of intense debate several decades after its discovery. SrTiO3 is also an incipient ferroelectric, and several recent theoretical studies have suggested that the two properties may be linked. To investigate whether such a connection exists, we grew strained, epitaxial SrTiO3 films, which are known to undergo a ferroelectric transition. We show that, for a range of carrier densities, the superconducting transition temperature is enhanced by up to a factor of two compared to unstrained films grown under the same conditions. Moreover, for these films, superconductivity emerges from a resistive state. We discuss the localization behavior in the context of proximity to ferroelectricity. The results point to new opportunities to enhance superconducting transition temperatures in oxide materials.

9.
Phys Rev Lett ; 119(18): 186803, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219551

ABSTRACT

The lattice response of a prototype Mott insulator, SmTiO_{3}, to hole doping is investigated with atomic-scale spatial resolution. SmTiO_{3} films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO_{3}-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. The results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.

10.
ACS Appl Mater Interfaces ; 9(44): 38706-38715, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29022714

ABSTRACT

Organic solar cells (OSCs) are a complex assembly of disparate materials, each with a precise function within the device. Typically, the electrodes are flat, and the device is fabricated through a layering approach of the interfacial layers and photoactive materials. This work explores the integration of high surface area transparent electrodes to investigate the possible role(s) a three-dimensional electrode could take within an OSC, with a BHJ composed of a donor-acceptor combination with a high degree of electron and hole mobility mismatch. Nanotree indium tin oxide (ITO) electrodes were prepared via glancing angle deposition, structures that were previously demonstrated to be single-crystalline. A thin layer of zinc oxide was deposited on the ITO nanotrees via atomic layer deposition, followed by a self-assembled monolayer of C60-based molecules that was bound to the zinc oxide surface through a carboxylic acid group. Infiltration of these functionalized ITO nanotrees with the photoactive layer, the bulk heterojunction comprising PC71BM and a high hole mobility low band gap polymer (PDPPTT-T-TT), led to families of devices that were analyzed for the effect of nanotree height. When the height was varied from 0 to 50, 75, 100, and 120 nm, statistically significant differences in device performance were noted with the maximum device efficiencies observed with a nanotree height of 75 nm. From analysis of these results, it was found that the intrinsic mobility mismatch between the donor and acceptor phases could be compensated for when the electron collection length was reduced relative to the hole collection length, resulting in more balanced charge extraction and reduced recombination, leading to improved efficiencies. However, as the ITO nanotrees increased in height and branching, the decrease in electron collection length was offset by an increase in hole collection length and potential deleterious electric field redistribution effects, resulting in decreased efficiency.

11.
Phys Rev Lett ; 118(23): 236803, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644662

ABSTRACT

We report on a metal-insulator transition (MIT) that is observed in an electron system at the SmTiO_{3}/SrTiO_{3} interface. This MIT is characterized by an abrupt transition at a critical temperature, below which the resistance changes by more than an order of magnitude. The temperature of the transition systematically depends on the carrier density, which is tuned from ∼1×10^{14} to 3×10^{14} cm^{-2} by changing the SmTiO_{3} thickness. An analysis of the transport properties shows non-Fermi-liquid behavior and mass enhancement as the carrier density is lowered. We compare the MIT characteristics with those of known MITs in other material systems and show that they are distinctly different in several aspects. We tentatively conclude that both long-range Coulomb interactions and the fixed charge at the polar interface are likely to play a role in this MIT. The strong dependence on the carrier density makes this MIT of interest for field-tunable devices.

12.
Phys Chem Chem Phys ; 18(33): 22772-7, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27477993

ABSTRACT

Semiconductor nanowires (NWs), due to their intriguing structural and physical properties, offer tremendous potential for future technological applications. The existence of strain in NWs can greatly affect, for instance, their mechanical, electrical and optical properties. Here, we report an extraordinary electrostatic response of semiconductor BiFeO3 NW loops, based on Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). A substantial ∼300 mV surface potential difference, accompanied by an ∼29% higher surface charge density, was found on the NW loop. We also found that the electrostatic enhancement is strongly related to the strain present at the curvature of the NW loops. We propose that the electric polarization coupled with mechanical strain (piezoelectric effect) or strain gradient (flexoelectricity) as possible reasons to account for our observation. These findings provide new insights into multiferroic based semiconductor NWs under external stimuli as well as significant inspiration towards strain sensors and electromechanical devices with multifunctional sensing abilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...