Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Biochem ; 46(10): e14365, 2022 10.
Article in English | MEDLINE | ID: mdl-35933727

ABSTRACT

The integrity of the bone is dependent on the strict balance between osteoclastogenesis and osteoblastogenesis, and any imbalance results in bone diseases. Dietary proteins (DP) have been shown to promote osteogenesis while inhibiting bone resorption in cultured osteoblasts, and in animal models of bone diseases such as ovariectomy, 1α,25-dihydroxy-vitamin D3 (VD3), and prostaglandin E2 (PGE2)-induced bone resorption. Hydrolysis of some of these DPs with osteo-modulatory properties has been shown to generate hydrolysates with bioactive peptides that exhibit higher osteo-modulatory properties in comparison to intact (parent) proteins. The higher bioactivity of the isolated peptides and protein hydrolysates compared to intact proteins indicates that the osteo-modulatory properties are dependent on the degree of exposure of the functional groups of amino acid residues involved in target interaction. This review provides an overview of the preparation of DP and select peptides with osteo-modulatory properties, and summarizes the potential underlying mechanisms of action through which the bioactive peptides help maintain bone health. PRACTICAL APPLICATIONS: Bone diseases such as osteoporosis (OP), osteoarthritis (OA), bone cancer (BC), and others have negative impacts on the quality of life, especially in older women after menopause. Current drugs used in treating many bone diseases such as bisphosphonates, anabolic steroids, and selective estrogen receptor modulators have been limited by worrisome adverse effects such as organ toxicity, increased risk of cancer, and cardiovascular abnormalities, and gastrointestinal discomfort. There is growing scientific evidence that certain multifunctional dietary proteins and bioactive peptides may positively modulate bone health by modifying risk factors for bone diseases including inflammation, oxidative stress, hyperlipidemia, and hyperglycemia.


Subject(s)
Bone Resorption , Osteoporosis , Amino Acids , Animals , Dietary Proteins , Dinoprostone , Diphosphonates , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Peptides/chemistry , Peptides/pharmacology , Protein Hydrolysates , Quality of Life , Selective Estrogen Receptor Modulators
2.
Front Pharmacol ; 12: 713090, 2021.
Article in English | MEDLINE | ID: mdl-34603027

ABSTRACT

The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.

3.
Molecules ; 26(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209371

ABSTRACT

Zanthoxylum species (Syn. Fagara species) of the Rutaceae family are widely used in many countries as food and in trado-medicinal practice due to their wide geographical distribution and medicinal properties. Peer reviewed journal articles and ethnobotanical records that reported the traditional knowledge, phytoconstituents, biological activities and toxicological profiles of Z. species with a focus on metabolic and neuronal health were reviewed. It was observed that many of the plant species are used as food ingredients and in treating inflammation, pain, hypertension and brain diseases. Over 500 compounds have been isolated from Z. species, and the biological activities of both the plant extracts and their phytoconstituents, including their mechanisms of action, are discussed. The phytochemicals responsible for the biological activities of some of the species are yet to be identified. Similarly, biological activities of some isolated compounds remain unknown. Taken together, the Z. species extracts and compounds possess promising biological activities and should be further explored as potential sources of new nutraceuticals and drugs.


Subject(s)
Dietary Supplements , Food Ingredients , Phytochemicals , Plant Extracts , Zanthoxylum/chemistry , Animals , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Zanthoxylum/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...