Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(25): 12107-12117, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38829164

ABSTRACT

Two-dimensional ferroelectric monolayers are promising candidates for compact memory devices and flexible electronics. Here, through first-principles calculations, we predict room temperature ferroelectricity in AB-type monolayers comprising group III (A = Al, In, Ga) and group V (B = As, P, Sb) elements. We show that their spontaneous polarization, oriented out-of-plane, ranges from 9.48 to 13.96 pC m-1, outperforming most known 2D ferroelectrics. We demonstrate an electric field tunable Berry curvature dipole and nonlinear Hall current in these monolayers. Additionally, we highlight their applicability in next-generation memory devices by forming efficient ferroelectric tunnel junctions, especially in InP, which supports high tunneling electroresistance. Our findings motivate further exploration of these monolayers for studying the interplay between the Berry curvature and ferroelectricity and for integrating these ferroelectric monolayers in next-generation electronic devices.

2.
Small ; 19(26): e2206357, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36942916

ABSTRACT

Engineering catalytically active sites have been a challenge so far and often relies on optimization of synthesis routes, which can at most provide quantitative enhancement of active facets, however, cannot provide control over choosing orientation, geometry and spatial distribution of the active sites. Artificially sculpting catalytically active sites via laser-etching technique can provide a new prospect in this field and offer a new species of nanocatalyst for achieving superior selectivity and attaining maximum yield via absolute control over defining their location and geometry of every active site at a nanoscale precision. In this work, a controlled protocol of artificial surface engineering is shown by focused laser irradiation on pristine MoS2 flakes, which are confirmed as catalytic sites by electrodeposition of AuNPs. The preferential Au deposited catalytic sites are found to be electrochemically active for nitrogen adsorption and its subsequent reduction due to the S-vacancies rather than Mo-vacancy, as advocated by DFT analysis. The catalytic performance of Au-NR/MoS2 shows a high yield rate of ammonia (11.43 × 10-8  mol s-1 cm-2 ) at a potential as low as -0.1 V versus RHE and a notable Faradaic efficiency of 13.79% during the electrochemical nitrogen reduction in 0.1 m HCl.

3.
Nanoscale ; 13(10): 5460-5478, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33687044

ABSTRACT

Inversion symmetry in the 1T-phase of pristine dichalcogenide monolayer MX2 (M = Ge, Sn; X = S, Se) is broken in their Janus structures, MXY (M = Ge, Sn; X ≠ Y = S, Se), which induces an in-plane piezoelectric coefficient, d22 = 4.09 (2.15) pm V-1 and a shear piezoelectric coefficient, d15 = 7.90 (13.68) pm V-1 in the GeSSe (SnSSe) monolayer. High flexibility arising from the small Young's modulus (60-70 N m-1) found in these Group-IV(A) Janus monolayers makes them suitable for large-scale strain engineering. Application of 7% uniaxial tensile strain increases d22 and d15 colossally to 267.07 pm V-1 and 702.34 pm V-1, respectively, thereby reaching the level of bulk piezoelectric perovskite materials. When the Janus GeSSe monolayers are stacked to form a van der Waals (vdW) homo-bilayer, d22 lies between 19.87 and 73.26 pm V-1, while d15 falls into the range between 83.01 and 604.34 pm V-1, depending on the stacking order. The chalcogen exchange energies and overall stabilities of the monolayers and bilayers confirm the feasibility of their experimental synthesis. Moreover, hole mobility in the GeSSe monolayer is greater than the electron mobility along its zigzag directions (µe = 883 cm2 V-1 s-1 and µh = 1134 cm2 V-1 s-1). Therefore, the semiconducting, flexible, and piezoelectric Janus GeSSe monolayer and bilayers are immensely promising for futuristic applications in energy harvesting, nanopiezotronic field-effect transistors, atomically thin sensors, shear/torsion actuators, transducers, self-powered circuits in nanorobotics, and electromechanical memory devices, and biomedical and other nanoelectronic applications.

4.
ACS Appl Energy Mater ; 3(6): 5153-5162, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32905359

ABSTRACT

To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell, such as undesirable band alignment at p-n interfaces, bandgap tuning, and fast carrier recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming Cu2Zn1-x Cd x SnS4 through cost-effective solution-based method without postannealing or sulfurization treatments. A synergetic experimental-theoretical approach was employed to characterize and assess the optoelectronic properties of Cu2Zn1-x Cd x SnS4 materials. Tunable direct band gap energy ranging from 1.51 to 1.03 eV with high absorption coefficient was demonstrated for the Cu2Zn1-x Cd x SnS4 nanocrystals with changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1-x Cd x SnS4 helps in effective carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and efficient separation of photoexcited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals compared to that of CZTS. We found that there exists a type-II staggered band alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV) measurements, corroborated by first-principles density functional theory (DFT) calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS interface. These results point toward efficient separation of photoexcited carriers across the p-n junction in the ultrafast time scale and highlight a route to improve device performances.

5.
J Phys Condens Matter ; 32(31): 315301, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32378516

ABSTRACT

Phonons in crystalline solids are of utmost importance in governing its lattice thermal conductivity (k L). In this work, k L in hafnium (Hf) dichalcogenide monolayers has been investigated based on ab initio DFT coupled to linearized Boltzmann transport equation together with single-mode relaxation-time approximation. Ultra-low k L found in HfS2 (2.19 W m-1 K-1), HfSe2 (1.23 W m-1 K-1) and HfSSe (1.78 W m-1 K-1) monolayers at 300 K, is comparable to that of the state-of-art bulk thermoelectric materials, such as, Bi2Te3 (1.6 W m-1 K-1), PbTe (2.2 W m-1 K-1) and SnSe (2.6 W m-1 K-1). Gigantic longitudinal-transverse optical (LO-TO) splitting of up to 147.7 cm-1 is noticed at the Brillouin zone-centre (Γ-point), which is much higher than that in MoS2 single layer (∼2 cm-1). It is driven by the colossal phonon-electric field coupling arising from the domination of ionic character in the interatomic bonds and Born effective or dynamical charges as high as 7.4e on the Hf ions, which is seven times that on Mo in MoS2 single layer. Enhancement in k L occurs in HfS2 (2.19 to 4.1 W m-1 K-1), HfSe2 (1.23 to 1.7 W m-1 K-1) and HfSSe (1.78 to 2.2 W m-1 K-1) upon the incorporation of the non-analytic correction term. Furthermore, the mode Grüneisen parameter is calculated to be as high as ∼2.0, at room temperature, indicating a strong anharmonicity. Moreover, the contribution of optical phonons to k L is found to be ∼12%, which is significantly high than that in single-layer MoS2. Large atomic mass of Hf (178.5 u), small phonon group velocities (4-5 km s-1), low Debye temperature (∼166 K), low bond and elastic stiffness (Young's modulus ∼75 N m-1), small phonon lifetimes (∼6 ps), low specific heat capacity (∼17 J K-1 mol-1) and strong anharmonicity are collectively found to be the factors responsible for such a low k L. These findings would be immensely helpful in designing thermoelectric interconnects at the nanoscale and 2D material-based energy harvesters.

6.
J Phys Condens Matter ; 32(35): 355301, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32340009

ABSTRACT

Although CdX (X = S, Se) has been mostly studied in the field of photocatalysis, photovoltaics, their intrinsic properties, such as, mechanical, piezoelectric, electron and phonon transport properties have been completely overlooked in buckled CdX monolayers. Ultra-low lattice thermal conductivity [1.08 W m-1 K-1 (0.75 W m-1 K-1)] and high p-type Seebeck coefficient [1300 µV K-1 (850 µV K-1)] in CdS (CdSe) monolayers have been found in this work based on first-principles DFT coupled to semi-classical Boltzmann transport equations, combining both the electronic and phononic transport. The dimensionless thermoelectric figure of merit is calculated to be 0.78 (0.5) in CdS (CdSe) monolayers at room temperature, which is comparable to that of two-dimensional (2D) tellurene (0.8), arsenene and antimonene (0.8), indicating its great potential for applications in 2D thermoelectrics. Such a low lattice thermal conductivity arise from the participation of both acoustic [91.98% (89.22%)] and optical modes [8.02% (10.78%)] together with low Debye temperature [254 K (187 K)], low group velocity [4 km s-1 (3 km s-1)] in CdS (CdSe) monolayers, high anharmonicity and short phonon lifetime. Substantial cohesive energy (∼4-5 eV), dynamical and mechanical stability of the monolayers substantiate the feasibility in synthesizing the single layers in experiments. The inversion symmetry broken along the z direction causes out-of-plane piezoelectricity. |d 33| ∼ 21.6 pm V-1, calculated in CdS monolayer is found to be the highest amongst structures having atomic-layer thickness. Superlow Young's modulus ∼41 N m-1 (31 N m-1) in CdS (CdSe) monolayers, which is comparable to that of planar CdS (29 N m-1) and TcTe2 (34 N m-1), is an indicator of its superhigh flexibility. Direct semiconducting band gap, high carrier mobility (∼500 cm2 V-1 s-1) and superhigh flexibility in CdX monolayers signify its gigantic potential for applications in ultrathin, stretchable and flexible nanoelectronics. The all-round properties can be synergistically combined together in futuristic applications in nano-piezotronics as well.

7.
ACS Appl Mater Interfaces ; 12(2): 3114-3126, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31904214

ABSTRACT

A stable ultrathin 2D van der Waals (vdW) heterobilayer, based on the recently synthesized boron monophosphide (BP) and the widely studied molybdenum disulfide (MoS2), has been systematically explored for the conversion of waste heat, solar energy, and nanomechanical energy into electricity. It shows a gigantic figure of merit (ZT) > 12 (4) for p (n)-type doping at 800 K, which is the highest ever reported till date. At room temperature (300 K), ZT reaches 1.1 (0.3) for p (n)-type doping, which is comparable to experimentally measured ZT = 1.1 on the PbTe-PbSnS2 nanocomposite at 300 K, while it outweighs the Cu2Se-CuInSe2 nanocomposite (ZT = 2.6 at 850 K) and the theoretically calculated ZT = 7 at 600 K on silver halides. Lattice thermal conductivity (κl ≈ 49 W m-1 K-1) calculated at room temperature is lesser than those of black phosphorene (78 W m-1 K-1) and arsenene (61 W m-1 K-1). The nearly matched lattice constants in the commensurate lattices of the constituent monolayers help to preserve the direct band gap at the K point in the type II vdW heterobilayer of MoS2/BP, where BP and MoS2 serve as donor and acceptor materials, respectively. An ultrahigh carrier mobility of ∼20 × 103 cm2 V-1 s-1 is found, which exceeds those of previously reported transition metal dichalcogenide-based vdW heterostructures. The exciton binding energy (0.5 eV) is close to those of MoS2 (0.54 eV) and C3N4 (0.33 eV) single layers. The calculated power conversion efficiency (PCE) in the monolayer MoS2/BP heterobilayer exceeds 20%. It surpasses the efficiency in MoS2/p-Si heterojunction solar cells (5.23%) and competes with the theoretically calculated ones, as listed in the manuscript. Furthermore, a high optical absorbance (∼105 cm-1) of visible light and a small conduction band offset (0.13 eV) make MoS2/BP very promising in 2D excitonic solar cells. The out-of-plane piezoelectric strain coefficient, d33 ≈ 3.16 pm/V, is found to be enhanced 4-fold (∼14.3 pm/V) upon applying 7% vertical compressive strain on the heterobilayer, which corresponds to ∼1 kbar of hydrostatic pressure. Such a high out-of-plane piezoelectric coefficient, which can tune top-gating effects in ultrathin 2D nanopiezotronics, is a relatively new finding. As BP has been synthesized recently, experimental realization of the multifunctional, versatile MoS2/BP heterostructure would be highly feasible.

8.
Nanoscale ; 11(45): 21880-21890, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31697290

ABSTRACT

A stable 2D van der Waals (vdW) heterobilayer, constituted by boron monophosphide (BP) and Gallium Nitride (GaN) monolayers, has been explored for different kinds of energy conversion and nanoelectronics. The nearly matched lattice constants of GaN and BP are commensurate with each other in their lattice structures. The out-of-plane inversion asymmetry coupled with the large difference in atomic charges between the GaN and BP monolayers induces in the heterobilayer a giant out-of-plane piezoelectric coefficient (|d33|max ≈ 40 pm V-1), which is the highest ever reported in 2D materials of a finite thickness. It is much higher than the out-of-plane piezoelectric coefficient reported earlier in multilayered Janus transition metal dichalcogenide MXY (M = Mo, W; X, Y = S, Se, Te) (|d33|max = 10.57 pm V-1). Such a high out-of-plane piezoelectricity found in a BP/GaN heterobilayer can bring about gigantic strain-tunable top gating effects in nanopiezotronic devices based on the same. Moreover, electron mobility (∼104 cm2 V-1 s-1) is much higher than that of transition metal dichalcogenides and conventional semiconductors. The origin of low lattice thermal conductivity (κL ∼ 25.25 W m-1 K-1) in BP/GaN at room temperature, which is lower than that of black phosphorene (78 W m-1 K-1), buckled arsenene (61 W m-1 K-1), BCN (90 W m-1 K-1), MoS2 (34.5 W m-1 K-1) and WS2 (32 W m-1 K-1) monolayers, has been systematically investigated via phonon dispersion, lattice thermal conductivity, phonon lifetime and mode Grüneisen parameters. The valence band maximum (VBM) and conduction band minimum (CBM) arising from GaN and BP monolayers respectively result in a type II vdW heterobilayer, which is found to be thermodynamically favorable for photocatalytic water splitting in both acidic and neutral media. The exciton binding energies are comparable to those of MoS2 and C3N4 single layers, while the absorbance reaches as high as ∼105 cm-1 in the visible wavelength region. The emergence of high piezoelectricity, high carrier mobility, low lattice thermal conductivity and photocatalytic water splitting abilities in the proposed vdW heterobilayer signifies enormous potential for its versatile applications in nanoscale energy harvesting, e.g., nano-sensors in medical devices, future nanopiezotronics, 2D thermoelectrics and solar energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL
...