Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 338: 122198, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763724

ABSTRACT

Chitosan (CS) aerogels are highly porous (∼99 %), exhibit ultralow density, and are excellent sorbents for removing ionic pollutants and oils/organic solvents from water. Their abundant hydroxyl and amino groups facilitate the adsorption of ionic pollutants through electrostatic interaction, complexation and chelation mechanisms. Selection of suitable surface wettability is the way to separate oils/organic solvents from water. This review summarizes the most recent developments in improving the adsorption performance, mechanical strength and regeneration of CS aerogels. The structure of the paper follows the extraction of chitosan, preparation and sorption characteristics of CS aerogels for heavy metal ions, organic dyes, and oils/organic solvents, sequentially. A detailed analysis of the parameters that influence the adsorption/absorption performance of CS aerogels is carried out and their effective control for improving the performance is suggested. The analysis of research outcomes of the recently published data came up with some interesting facts that the unidirectional pore structure and characteristics of the functional group of the aerogel and pH of the adsorbate have led to the enhanced adsorption performance of the CS aerogel. Finally, the excerpts of the literature survey highlighting the difficulties and potential of CS aerogels for water remediation are proposed.

2.
ACS Omega ; 9(10): 11730-11737, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496988

ABSTRACT

The agglomeration of reduced graphene oxide (rGO) in water makes the development of rGO inks for supercapacitor printing challenging. Cellulose nanofiber (CNF), a biodegradable and renewable nanomaterial, can act as a nanospacer, preventing the agglomeration and restacking of rGO flakes. In this work, rGO/CNF films were fabricated using an environmentally friendly water-based rGO/CNF ink. In the absence of an additional binder/surfactant, the rGO/CNF films demonstrated remarkably enhanced hydrophilicity while retaining good electrical conductivity. The concentration of CNF was varied to observe the variation in the electrochemical performance. At a current density of 1 mA/cm2, the rGO/CNF-15 film exhibited a maximum areal capacitance of 98.61 mF/cm2, closely matching that of pure rGO films. Because of its excellent electrical performance, ease of manufacturing, and environmental friendliness, this water-based rGO/CNF ink may have promising applications in the printing of supercapacitor electrodes.

3.
Carbohydr Polym ; 309: 120677, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36906371

ABSTRACT

Water purification using thin membranes at high pressures through adsorption and size exclusion is the widely used mechanism due to its simplicity and enhanced efficiency compared to other traditional water purification methods. Aerogels have the potential to replace conventional thin membranes considering their unmatched adsorption/absorption capacity and higher water flux due to their unique highly porous (99 %) 3D structure, ultra-low density (~1.1 to 500 mg/cm3), and very high surface area. The availability of a large number of functional groups, surface tunability, hydrophilicity, tensile strength and flexibility of nanocellulose (NC) makes it a potential candidate for aerogel preparation. This review discusses the preparation and employment of NC-based aerogels in the removal of dyes, metal ions and oils/organic solvents. It also offers recent updates on the effect of various parameters that enhance its adsorption/absorption performance. The future perspectives of NC aerogels and their performance with the emerging materials chitosan and graphene oxide are also compared.

4.
Carbohydr Polym ; 297: 120039, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184147

ABSTRACT

Recently, in response to the challenges related to energy development and environmental issues, extensive efforts are being made towards the development of supercapacitors based on green and sustainable resources. Aerogel electrodes offer high energy/power autonomy, fast charge-discharge rates, and long charge/discharge cycles over composite film electrodes due to their unique structure, ultra-lightness, high porosity, and large specific surface area. Nanocellulose (NC), a sustainable nanomaterial, has gained popularity as a supercapacitor electrode material owing to its remarkable properties such as biodegradability, tunable surface chemistry, ability to develop 3D aerogel structures, etc. This comprehensive review summarizes the research progress on developing NC-based aerogels for supercapacitor applications. First, the fundamentals of NC extraction from cellulose sources and aerogel processing routes are discussed. An attempt is made to correlate the electrochemical performance of NC-based electrodes with their aerogel structures. Finally, challenges and future prospects for the advancement of NC-based aerogels are addressed.


Subject(s)
Cellulose , Nanostructures , Cellulose/chemistry , Electrodes , Gels/chemistry , Porosity
5.
Carbohydr Polym ; 255: 117479, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436241

ABSTRACT

The research in eco-friendly and sustainable materials for packaging applications with enhanced barrier, thermo-mechanical, rheological and anti-bacterial properties has accelerated in the last decade. Last decade has witnessed immense interest in employing nanocellulose (NC) as a sustainable and biodegradable alternative to the current synthetic packaging barrier films. This review article gathers the research information on NC as a choice for food packaging material. It reviews on the employment of NC and its various forms including its chemico-physical treatments into bio/polymers and its impact on the performance of nanocomposites for food packaging application. The review reveals the fact that the research trends towards NC based materials are quite promising for Active Packaging (AP) applications, including the Controlled Release Packaging (CRP) and Responsive Packaging (RP). Finally, it summarizes with the challenges of sustainable packaging, gray areas that need an improvement/focus in order to commercially exploit this wonderful material for packaging application.


Subject(s)
Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Delayed-Action Preparations/chemistry , Food Packaging/methods , Nanocomposites/chemistry , Acrylic Resins/chemistry , Anti-Bacterial Agents/pharmacology , Biodegradation, Environmental , Cellulose/ultrastructure , Chitosan/chemistry , Delayed-Action Preparations/pharmacology , Dopamine/chemistry , Humans , Membranes, Artificial , Polyesters/chemistry , Steam/analysis , Tannins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...