Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 30(2): 121-5, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16525756

ABSTRACT

Lysine is a nutritionally important essential amino acid, whose synthesis in plants is strongly regulated by the rate of its synthesis. Yet, lysine level in plants is also finely controlled by a super-regulated catabolic pathway that catabolizes lysine into glutamate and acetyl Co-A. The first two enzymes of lysine catabolism are synthesized from a single LKR/SDH gene. Expression of this gene is subject to compound developmental, hormonal and stress-associated regulation. Moreover, the LKR/SDH gene of different plant species encodes up to three distinct polypeptides: (i) a bifunctional enzyme containing the linked lysine-ketoglutarate (LKR) and saccharopine dehydrogenase (SDH) whose LKR activity is regulated by its linked SDH enzyme; (ii) a monofunctional SDH encoded by an internal promoter, which is a part of the coding DNA region of the LKR/SDH gene; and (iii) a monofunctional, highly potent LKR that is formed by polyadenylation within an intron. LKR activity in the bifunctional LKR/SDH polypeptide is also post-translationally regulated by phosphorylation by casein kinase-2 (CK2), but the consequence of this regulation is still unknown. Why is lysine metabolism super-regulated by synthesis and catabolism? A hypothesis addressing this important question is presented, suggesting that lysine may serve as a regulator of plant growth and interaction with the environment.


Subject(s)
Lysine/metabolism , Plants/metabolism , Animals , Gene Expression Regulation, Plant , Homeostasis , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...