Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5791, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758695

ABSTRACT

Earthquake-induced soil-liquefaction is a devastating phenomenon associated with loss of soil rigidity due to seismic shaking, resulting in catastrophic liquid-like soil deformation. Traditionally, liquefaction is viewed as an effectively undrained process. However, since undrained liquefaction only initiates under high energy density, most earthquake liquefaction events remain unexplained, since they initiate far from the earthquake epicenter, under low energy density. Here we show that liquefaction can occur under drained conditions at remarkably low seismic-energy density, offering a general explanation for earthquake far-field liquefaction. Drained conditions promote interstitial fluid flow across the soil during earthquakes, leading to excess pore pressure gradients and loss of soil strength. Drained liquefaction is triggered rapidly and controlled by a propagating compaction front, whose velocity depends on the seismic-energy injection rate. Our findings highlight the importance of considering soil liquefaction under a spectrum of drainage conditions, with critical implications for liquefaction potential assessments and hazards.

2.
Eur Phys J E Soft Matter ; 44(11): 134, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34731339

ABSTRACT

Shear strain localization into shear bands is associated with velocity weakening instabilities and earthquakes. Here, we simulate steady-state plane-shear flow of numerical granular material (gouge), confined between parallel surfaces. Both constant shear stress and constant strain-rate boundary conditions are tested, and the two types of boundary conditions are found to yield distinct velocity profiles and friction laws. The inertial number, I, exerts the largest control on the layers' behavior, but additional dependencies of friction on normal stress and thickness of the layer are observed under constant stress boundary condition. We find that shear-band localization, which is present in the quasistatic regime ([Formula: see text]) in rate-controlled shear, is absent under stress-controlled loading. In the latter case, flow ceases when macroscopic friction coefficient approaches the quasistatic friction value. The inertial regime that occurs at higher inertial numbers ([Formula: see text]) is associated with distributed shear, and friction and porosity that increase with shear rate (rate-strengthening regime). The finding that shear under constant stress boundary condition produces the inertial, distributed shear but never quasistatic, localized deformation is rationalized based on low fluctuations of shear forces in granular contacts for stress-controlled loading. By examining porosity within and outside a shear band, we also provide a mechanical reason why the transition between quasistatic and inertial shear coincides with the transition between localized and distributed strain.

3.
Phys Rev E ; 103(5-1): 052802, 2021 May.
Article in English | MEDLINE | ID: mdl-34134208

ABSTRACT

We present a minimal one-dimensional continuum model for the transition from cracklike to pulselike propagation of frictional rupture. In its nondimensional form, the model depends on only two free parameters: the nondimensional prestress and an elasticity ratio that accounts for the finite height of the system. The model predicts stable slip pulse solutions for slip boundary conditions, and unstable slip pulse solutions for stress boundary conditions. The results demonstrate that a mechanism based solely on elastic relaxation and redistribution of initial prestress can cause pulselike rupture, without any particular rate or slip dependences of dynamic friction. This means that pulselike propagation along frictional interfaces is likely a generic feature that can occur in systems of finite thickness over a wide range of friction constitutive laws.

4.
Phys Rev E ; 93: 042902, 2016 04.
Article in English | MEDLINE | ID: mdl-27176375

ABSTRACT

The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(5 Pt 1): 051302, 2002 May.
Article in English | MEDLINE | ID: mdl-12059546

ABSTRACT

We present results from two-dimensional computer simulations of shearing granular layers, using a discrete element code, and applying a wide range of boundary conditions. We specifically investigate the distribution of shear within the granular layer and find two different modes of localization depending on the applied shear velocity, pressure, and layer thickness: (1) granular layers that develop a persistent shearing boundary region ("fluidlike" behavior) and (2) layers that switch between diffuse deformation and randomly positioned internal shear bands ("solidlike" behavior). The two end-member deformation modes can be found in laboratory experiments performed under low and high confining pressure, respectively. Micromechanical investigation reveals two different statistical distributions of the grain contacts correlating with the two different shearing modes. These results imply that rehological transitions in granular flow modes are linked to quantifiable microtstructural organization.

SELECTION OF CITATIONS
SEARCH DETAIL
...