Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 44984-44995, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37703171

ABSTRACT

Nonthermal plasma (NTP)-assisted catalytic dry reforming of methane (DRM) is considered a powerful single-stage reaction mechanism because of its ability to activate normally stable CO2 and CH4 at a low temperature under ambient conditions. The thermodynamic barrier of DRM requires a high operating temperature (>700 °C), which can be reduced by nonequilibrium plasma. Herein, we present a method for the wet-impregnation synthesis of CeO2 nanorod (NR)-supported 5 and 15 wt % NiO catalysts for efficient NTP-promoted DRM with an applied power in the range of 24.9-25.8 W (frequency: 20 kHz), a CH4:CO2 feed gas ratio of 100:250 sccm, and a total flow rate of 350 sccm. The presence of NTP dramatically increased the reaction activity, even at 150 °C, which is usually inaccessible for thermally catalyzed DRM. The CH4 and CO2 conversion reaches a maximum of 66 and 48%, respectively, at 500 °C with the 15 wt % NiO/CeO2 NR catalyst, which are much higher than the values obtained for the 5 wt % NiO/CeO2 NR catalyst under the same conditions. According to the X-ray photoelectron spectroscopy profile for 15 wt % NiO/CeO2 NR, a higher concentration of NiO on CeO2 increases the proportion of Ce3+ in the catalyst, suggesting enhanced oxygen vacancy concentration with an increased amount of NiO loading. Additionally, a higher NiO loading promotes a higher rate of replacement of Ce4+ with Ni2+, which generates more oxygen vacancies due to the induced charge imbalance and lattice distortion within the CeO2 lattice. As a result, it can be inferred that the incorporation of Ni ions into the CeO2 structure resulted in inhibited growth of CeO2 crystals due to the creation of a NixCe1-xO2-α solid solution and the production of oxygen vacancies.

2.
J Colloid Interface Sci ; 635: 391-405, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599238

ABSTRACT

In this report, MoTe2 nanosheets were grown on highly conductive graphene support through a simple and ultrafast microwave-assisted chemical coupling and heating method to develop hybrid sulfur host materials for Li-S batteries. MoTe2 nanosheets with superb electrocatalytic activity combined with highly conductive graphene form a nano reservoir for containing elemental sulfur, intermediate polysulfide species, discharge product Li2S, and accelerating the electron transfer. Accordingly, the Li-S battery with the MoTe2@graphene@carbon cloth electrode exhibited a high initial discharge capacity of 1246 mAh g-1 at 0.2C for the first galvanostatic cycle, good cycle stability (98.7% capacity retention after 100 cycles at 0.2C) and superb rate performance. The synergistic effect of the chemical affinity and superior electrocatalytic capability of polar MoTe2, along with the effective physical confinement by graphene and free-standing carbon cloth, provides a promising way to design host materials to mitigate the shuttling effect in rechargeable Li-S batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...