Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Med Chem ; 59(11): 5221-37, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27167172

ABSTRACT

Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)amino)pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic-pharmacodynamic (PK-PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition.


Subject(s)
4-Aminopyridine/analogs & derivatives , Checkpoint Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , 4-Aminopyridine/chemical synthesis , 4-Aminopyridine/chemistry , 4-Aminopyridine/pharmacology , Checkpoint Kinase 1/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
2.
Oncotarget ; 7(3): 2329-42, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26295308

ABSTRACT

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1. CCT245737 potently inhibited cellular CHK1 activity (IC50 30-220 nM) and enhanced gemcitabine and SN38 cytotoxicity in multiple human tumor cell lines and human tumor xenograft models. Mouse oral bioavailability was complete (100%) with extensive tumor exposure. Genotoxic-induced CHK1 activity (pS296 CHK1) and cell cycle arrest (pY15 CDK1) were inhibited both in vitro and in human tumor xenografts by CCT245737, causing increased DNA damage and apoptosis. Uniquely, we show CCT245737 enhanced gemcitabine antitumor activity to a greater degree than for higher doses of either agent alone, without increasing toxicity, indicating a true therapeutic advantage for this combination. Furthermore, development of a novel ELISA assay for pS296 CHK1 autophosphorylation, allowed the quantitative measurement of target inhibition in a RAS mutant human tumor xenograft of NSCLC at efficacious doses of CCT245737. Finally, CCT245737 also showed significant single-agent activity against a MYC-driven mouse model of B-cell lymphoma. In conclusion, CCT245737 is a new CHK1 inhibitor clinical development candidate scheduled for a first in man Phase I clinical trial, that will use the novel pS296 CHK1 ELISA to monitor target inhibition.


Subject(s)
4-Aminopyridine/analogs & derivatives , Carcinoma, Non-Small-Cell Lung/drug therapy , Checkpoint Kinase 1/drug effects , Lung Neoplasms/drug therapy , Lymphoma, B-Cell/drug therapy , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Pyrazines/pharmacology , Xenograft Model Antitumor Assays , 4-Aminopyridine/pharmacokinetics , 4-Aminopyridine/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , CDC2 Protein Kinase , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Damage/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Synergism , HT29 Cells , Humans , Irinotecan , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Pyrazines/pharmacokinetics , Gemcitabine
3.
Oncotarget ; 4(10): 1647-61, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24072592

ABSTRACT

The ribosomal P70 S6 kinases play a crucial role in PI3K/mTOR regulated signalling pathways and are therefore potential targets for the treatment of a variety of diseases including diabetes and cancer. In this study we describe the identification of three series of chemically distinct S6K1 inhibitors. In addition, we report a novel PKA-S6K1 chimeric protein with five mutations in or near its ATP-binding site, which was used to determine the binding mode of two of the three inhibitor series, and provided a robust system to aid the optimisation of the oxadiazole-substituted benzimidazole inhibitor series. We show that the resulting oxadiazole-substituted aza-benzimidazole is a potent and ligand efficient S6 kinase inhibitor, which blocks the phosphorylation of RPS6 at Ser235/236 in TSC negative HCV29 human bladder cancer cells by inhibiting S6 kinase activity and thus provides a useful tool compound to investigate the function of S6 kinases.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Design , High-Throughput Screening Assays/methods , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Models, Molecular , Phosphorylation , Protein Kinase Inhibitors/chemistry , Recombinant Fusion Proteins/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Structure-Activity Relationship , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/enzymology
4.
PLoS One ; 8(6): e65689, 2013.
Article in English | MEDLINE | ID: mdl-23776527

ABSTRACT

Checkpoint kinase 2 (CHK2) is an important serine/threonine kinase in the cellular response to DNA damage. A fragment-based screening campaign using a combination of a high-concentration AlphaScreen™ kinase assay and a biophysical thermal shift assay, followed by X-ray crystallography, identified a number of chemically different ligand-efficient CHK2 hinge-binding scaffolds that have not been exploited in known CHK2 inhibitors. In addition, it showed that the use of these orthogonal techniques allowed efficient discrimination between genuine hit matter and false positives from each individual assay technology. Furthermore, the CHK2 crystal structures with a quinoxaline-based fragment and its follow-up compound highlight a hydrophobic area above the hinge region not previously explored in rational CHK2 inhibitor design, but which might be exploited to enhance both potency and selectivity of CHK2 inhibitors.


Subject(s)
Adenosine Triphosphate/metabolism , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/metabolism , Models, Molecular , Protein Conformation , Binding Sites/genetics , Checkpoint Kinase 2/antagonists & inhibitors , Crystallography , Crystallography, X-Ray , Molecular Structure , Protein Kinase Inhibitors/chemistry
5.
J Med Chem ; 55(22): 10229-40, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23082860

ABSTRACT

Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential antitumor agents, but the most advanced inhibitor series reported to date are not orally bioavailable. A novel series of potent and orally bioavailable 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitrile CHK1 inhibitors was generated by hybridization of two lead scaffolds derived from fragment-based drug design and optimized for CHK1 potency and high selectivity using a cell-based assay cascade. Efficient in vivo pharmacokinetic assessment was used to identify compounds with prolonged exposure following oral dosing. The optimized compound (CCT244747) was a potent and highly selective CHK1 inhibitor, which modulated the DNA damage response pathway in human tumor xenografts and showed antitumor activity in combination with genotoxic chemotherapies and as a single agent.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Pyrimidines/pharmacology , Administration, Oral , Aminopyridines/chemical synthesis , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Checkpoint Kinase 1 , Child , Colonic Neoplasms/enzymology , DNA Damage/drug effects , Drug Design , Humans , Mice , Mice, Nude , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neuroblastoma/enzymology , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Pyrimidines/chemical synthesis , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Clin Cancer Res ; 18(20): 5650-61, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22929806

ABSTRACT

PURPOSE: Many tumors exhibit defective cell-cycle checkpoint control and increased replicative stress. CHK1 is critically involved in the DNA damage response and maintenance of replication fork stability. We have therefore discovered a novel potent, highly selective, orally active ATP-competitive CHK1 inhibitor, CCT244747, and present its preclinical pharmacology and therapeutic activity. EXPERIMENTAL DESIGN: Cellular CHK1 activity was assessed using an ELISA assay, and cytotoxicity a SRB assay. Biomarker modulation was measured using immunoblotting, and cell-cycle effects by flow cytometry analysis. Single-agent oral CCT244747 antitumor activity was evaluated in a MYCN-driven transgenic mouse model of neuroblastoma by MRI and in genotoxic combinations in human tumor xenografts by growth delay. RESULTS: CCT244747 inhibited cellular CHK1 activity (IC(50) 29-170 nmol/L), significantly enhanced the cytotoxicity of several anticancer drugs, and abrogated drug-induced S and G(2) arrest in multiple tumor cell lines. Biomarkers of CHK1 (pS296 CHK1) activity and cell-cycle inactivity (pY15 CDK1) were induced by genotoxics and inhibited by CCT244747 both in vitro and in vivo, producing enhanced DNA damage and apoptosis. Active tumor concentrations of CCT244747 were obtained following oral administration. The antitumor activity of both gemcitabine and irinotecan were significantly enhanced by CCT244747 in several human tumor xenografts, giving concomitant biomarker modulation indicative of CHK1 inhibition. CCT244747 also showed marked antitumor activity as a single agent in a MYCN-driven neuroblastoma. CONCLUSION: CCT244747 represents the first structural disclosure of a highly selective, orally active CHK1 inhibitor and warrants further evaluation alone or combined with genotoxic anticancer therapies.


Subject(s)
Aminopyridines/administration & dosage , Neoplasms, Experimental , Neuroblastoma , Protein Kinases , Pyrimidines/administration & dosage , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints/drug effects , Checkpoint Kinase 1 , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Transgenic , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinases/genetics , Protein Kinases/metabolism
7.
J Med Chem ; 55(7): 3228-41, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22404346
8.
PLoS One ; 7(1): e28568, 2012.
Article in English | MEDLINE | ID: mdl-22253692

ABSTRACT

Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes.


Subject(s)
Enzyme Activators/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Signal Transduction/drug effects , eIF-2 Kinase/metabolism , Animals , Cluster Analysis , Cyclin D1/metabolism , DNA, Complementary/genetics , Drug Evaluation, Preclinical , Drug Interactions , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Enzyme Activators/chemistry , Eukaryotic Initiation Factor-2/metabolism , Humans , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Paclitaxel/pharmacology , Phosphorylation/drug effects , Retinoblastoma Protein/metabolism , Transcriptome/drug effects , Transcriptome/genetics
9.
J Med Chem ; 54(24): 8328-42, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22111927

ABSTRACT

Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Isoquinolines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
10.
J Med Chem ; 54(6): 1626-39, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366329

ABSTRACT

We describe herein the structure-activity relationship (SAR) and cocrystal structures of a series of Nek2 inhibitors derived from the published polo-like kinase 1 (Plk1) inhibitor (R)-1. Our studies reveal a nonlinear SAR for Nek2 and our cocrystal structures show that compounds in this series bind to a DFG-out conformation of Nek2 without extending into the enlarged back pocket commonly found in this conformation. These observations were further investigated, and structure-based design led to Nek2 inhibitors derived from (R)-1 with more than a hundred-fold selectivity against Plk1.


Subject(s)
Benzamides/chemical synthesis , Benzimidazoles/chemical synthesis , Models, Molecular , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzamides/chemistry , Benzamides/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites , Crystallography, X-Ray , Female , Humans , In Vitro Techniques , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , NIMA-Related Kinases , Phosphorylation , Protein Binding , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Stereoisomerism , Structure-Activity Relationship
11.
J Med Chem ; 54(2): 580-90, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21186793

ABSTRACT

Structure-based design was applied to the optimization of a series of 2-(quinazolin-2-yl)phenols to generate potent and selective ATP-competitive inhibitors of the DNA damage response signaling enzyme checkpoint kinase 2 (CHK2). Structure-activity relationships for multiple substituent positions were optimized separately and in combination leading to the 2-(quinazolin-2-yl)phenol 46 (IC(50) 3 nM) with good selectivity for CHK2 against CHK1 and a wider panel of kinases and with promising in vitro ADMET properties. Off-target activity at hERG ion channels shown by the core scaffold was successfully reduced by the addition of peripheral polar substitution. In addition to showing mechanistic inhibition of CHK2 in HT29 human colon cancer cells, a concentration dependent radioprotective effect in mouse thymocytes was demonstrated for the potent inhibitor 46 (CCT241533).


Subject(s)
Phenols/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinazolines/chemical synthesis , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line , Checkpoint Kinase 2 , Crystallography, X-Ray , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , HT29 Cells , Humans , In Vitro Techniques , Mice , Models, Molecular , Phenols/chemistry , Phenols/pharmacology , Protein Binding , Quinazolines/chemistry , Quinazolines/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/pharmacology , Stereoisomerism , Structure-Activity Relationship , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/radiation effects
12.
J Med Chem ; 53(21): 7682-98, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20936789

ABSTRACT

We report herein the first systematic exploration of inhibitors of the mitotic kinase Nek2. Starting from HTS hit aminopyrazine 2, compounds with improved activity were identified using structure-based design. Our structural biology investigations reveal two notable observations. First, 2 and related compounds bind to an unusual, inactive conformation of the kinase which to the best of our knowledge has not been reported for other types of kinase inhibitors. Second, a phenylalanine residue at the center of the ATP pocket strongly affects the ability of the inhibitor to bind to the protein. The implications of these observations are discussed, and the work described here defines key features for potent and selective Nek2 inhibition, which will aid the identification of more advanced inhibitors of Nek2.


Subject(s)
Models, Molecular , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrazines/chemical synthesis , Crystallography, X-Ray , Humans , NIMA-Related Kinases , Phosphorylation , Protein Binding , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Pyrazines/chemistry , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 20(14): 4045-9, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20561787

ABSTRACT

A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical
14.
J Med Chem ; 53(5): 2239-49, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20151677

ABSTRACT

Protein kinase B (PKB or Akt) is an important component of intracellular signaling pathways regulating growth and survival. Signaling through PKB is frequently deregulated in cancer, and inhibitors of PKB therefore have potential as antitumor agents. The optimization of lipophilic substitution within a series of 4-benzyl-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amines provided ATP-competitive, nanomolar inhibitors with up to 150-fold selectivity for inhibition of PKB over the closely related kinase PKA. Although active in cellular assays, compounds containing 4-amino-4-benzylpiperidines underwent metabolism in vivo, leading to rapid clearance and low oral bioavailability. Variation of the linker group between the piperidine and the lipophilic substituent identified 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as potent and orally bioavailable inhibitors of PKB. Representative compounds modulated biomarkers of signaling through PKB in vivo and strongly inhibited the growth of human tumor xenografts in nude mice at well-tolerated doses.


Subject(s)
Antineoplastic Agents/chemical synthesis , Piperidines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Half-Life , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Piperidines/chemistry , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
Mol Cancer Ther ; 9(1): 89-100, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20053762

ABSTRACT

Genotoxic antitumor agents continue to be the mainstay of current cancer chemotherapy. These drugs cause DNA damage and activate numerous cell cycle checkpoints facilitating DNA repair and the maintenance of genomic integrity. Most human tumors lack functional p53 and consequently have compromised G(1)-S checkpoint control. This has led to the hypothesis that S and G(2)-M checkpoint abrogation may selectively enhance genotoxic cell killing in a p53-deficient background, as normal cells would be rescued at the G(1)-S checkpoint. CHK1 is a serine/threonine kinase associated with DNA damage-linked S and G(2)-M checkpoint control. SAR-020106 is an ATP-competitive, potent, and selective CHK1 inhibitor with an IC(50) of 13.3 nmol/L on the isolated human enzyme. This compound abrogates an etoposide-induced G(2) arrest with an IC(50) of 55 nmol/L in HT29 cells, and significantly enhances the cell killing of gemcitabine and SN38 by 3.0- to 29-fold in several colon tumor lines in vitro and in a p53-dependent fashion. Biomarker studies have shown that SAR-020106 inhibits cytotoxic drug-induced autophosphorylation of CHK1 at S296 and blocks the phosphorylation of CDK1 at Y15 in a dose-dependent fashion both in vitro and in vivo. Cytotoxic drug combinations were associated with increased gammaH2AX and poly ADP ribose polymerase cleavage consistent with the SAR-020106-enhanced DNA damage and tumor cell death. Irinotecan and gemcitabine antitumor activity was enhanced by SAR-020106 in vivo with minimal toxicity. SAR-020106 represents a novel class of CHK1 inhibitors that can enhance antitumor activity with selected anticancer drugs in vivo and may therefore have clinical utility.


Subject(s)
Isoquinolines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrazines/pharmacology , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/metabolism , Camptothecin/administration & dosage , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Checkpoint Kinase 1 , DNA Damage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Synergism , G2 Phase/drug effects , Humans , Irinotecan , Isoquinolines/administration & dosage , Isoquinolines/chemistry , Isoquinolines/pharmacokinetics , Mice , Mice, Nude , Mutagens/toxicity , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Gemcitabine
16.
J Med Chem ; 52(15): 4810-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19572549

ABSTRACT

Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/drug effects , Checkpoint Kinase 1 , Drug Evaluation, Preclinical , HT29 Cells , Humans , Hydrogen Bonding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinases/chemistry , Structure-Activity Relationship
17.
Bioorg Med Chem ; 17(2): 467-74, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19101154

ABSTRACT

High-throughput screening led to the identification of isothiazolones 1 and 2 as inhibitors of histone acetyltransferase (HAT) with IC50s of 3 microM and 5 microM, respectively. Analogues of these hit compounds with variations of the N-phenyl group, and with variety of substituents at C-4, C-5 of the thiazolone ring, were prepared and assayed for inhibition of the HAT enzyme PCAF. Potency is modestly favoured when the N-aryl group is electron deficient (4-pyridyl derivative 10 has IC(50)=1.5 microM); alkyl substitution at C-4 has little effect, whilst similar substitution at C-5 causes a significant drop in potency. The ring-fused compound 38 has activity (IC(50)=6.1 microM) to encourage further exploration of this bicyclic structure. The foregoing SAR is consistent with an inhibitory mechanism involving cleavage of the S-N bond of the isothiazolone ring by a catalytically important thiol residue.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Histone Acetyltransferases/antagonists & inhibitors , Thiazoles/chemical synthesis , Animals , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship , Thiazoles/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors
18.
J Med Chem ; 51(7): 2147-57, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18345609

ABSTRACT

Fragment-based screening identified 7-azaindole as a protein kinase B inhibitor scaffold. Fragment elaboration using iterative crystallography of inhibitor-PKA-PKB chimera complexes efficiently guided improvements in the potency and selectivity of the compounds, resulting in the identification of nanomolar 6-(piperidin-1-yl)purine, 4-(piperidin-1-yl)-7-azaindole, and 4-(piperidin-1-yl)pyrrolo[2,3- d]pyrimidine inhibitors of PKBbeta with antiproliferative activity and showing pathway inhibition in cells. A divergence in the binding mode was seen between 4-aminomethylpiperidine and 4-aminopiperidine containing molecules. Selectivity for PKB vs PKA was observed with 4-aminopiperidine derivatives, and the most PKB-selective inhibitor (30-fold) showed significantly different bound conformations between PKA and PKA-PKB chimera.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Animals , Binding Sites , Cell Line, Tumor , Chromatography, Liquid/methods , Crystallography, X-Ray , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Inhibitors/metabolism , Humans , Ligands , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Pyrimidines/metabolism , Pyrroles/metabolism , Stereoisomerism , Structure-Activity Relationship , Substrate Specificity
19.
J Med Chem ; 50(10): 2289-92, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17451235

ABSTRACT

6-phenylpurines were identified as novel, ATP-competitive inhibitors of protein kinase B (PKB/Akt) from a fragment-based screen and were rapidly progressed to potent compounds using iterative protein-ligand crystallography with a PKA-PKB chimeric protein. An elaborated lead compound showed cell growth inhibition and effects on cellular signaling pathways characteristic of PKB inhibition.


Subject(s)
Antineoplastic Agents/chemical synthesis , Models, Molecular , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/chemistry , Purines/chemical synthesis , Adenosine Triphosphate/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cyclic AMP-Dependent Protein Kinases/genetics , Drug Design , Drug Screening Assays, Antitumor , Humans , Ligands , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/genetics , Purines/chemistry , Purines/pharmacology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Structure-Activity Relationship
20.
EMBO J ; 25(13): 3179-90, 2006 Jul 12.
Article in English | MEDLINE | ID: mdl-16794575

ABSTRACT

The protein kinase Chk2 (checkpoint kinase 2) is a major effector of the replication checkpoint. Chk2 activation is initiated by phosphorylation of Thr68, in the serine-glutamine/threonine-glutamine cluster domain (SCD), by ATM. The phosphorylated SCD-segment binds to the FHA domain of a second Chk2 molecule, promoting dimerisation of the protein and triggering phosphorylation of the activation segment/T-loop in the kinase domain. We have now determined the structure of the kinase domain of human Chk2 in complexes with ADP and a small-molecule inhibitor debromohymenialdisine. The structure reveals a remarkable dimeric arrangement in which T-loops are exchanged between protomers, to form an active kinase conformation in trans. Biochemical data suggest that this dimer is the biologically active state promoted by ATM-phosphorylation, and also suggests a mechanism for dimerisation-driven activation of Chk2 by trans-phosphorylation.


Subject(s)
DNA Damage , Models, Molecular , Protein Serine-Threonine Kinases/chemistry , Trans-Activators , Adenosine Diphosphate/chemistry , Ataxia Telangiectasia Mutated Proteins , Azepines/chemistry , Catalytic Domain , Cell Cycle Proteins/chemistry , Checkpoint Kinase 2 , DNA-Binding Proteins/chemistry , Dimerization , Enzyme Activation , Humans , Phosphorylation , Protein Conformation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Pyrroles/chemistry , Signal Transduction , Tumor Suppressor Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...